Fabiana Camattari, Sabrina Guastavino, Francesco Marchetti, Michele Piana, Emma Perracchione
{"title":"通过贪婪方法进行分类器特征选择","authors":"Fabiana Camattari, Sabrina Guastavino, Francesco Marchetti, Michele Piana, Emma Perracchione","doi":"10.1007/s11222-024-10460-2","DOIUrl":null,"url":null,"abstract":"<p>The purpose of this study is to introduce a new approach to feature ranking for classification tasks, called in what follows greedy feature selection. In statistical learning, feature selection is usually realized by means of methods that are independent of the classifier applied to perform the prediction using that reduced number of features. Instead, the greedy feature selection identifies the most important feature at each step and according to the selected classifier. The benefits of such scheme are investigated in terms of model capacity indicators, such as the Vapnik-Chervonenkis dimension or the kernel alignment. This theoretical study proves that the iterative greedy algorithm is able to construct classifiers whose complexity capacity grows at each step. The proposed method is then tested numerically on various datasets and compared to the state-of-the-art techniques. The results show that our iterative scheme is able to truly capture only a few relevant features, and may improve, especially for real and noisy data, the accuracy scores of other techniques. The greedy scheme is also applied to the challenging application of predicting geo-effective manifestations of the active Sun.</p>","PeriodicalId":22058,"journal":{"name":"Statistics and Computing","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classifier-dependent feature selection via greedy methods\",\"authors\":\"Fabiana Camattari, Sabrina Guastavino, Francesco Marchetti, Michele Piana, Emma Perracchione\",\"doi\":\"10.1007/s11222-024-10460-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The purpose of this study is to introduce a new approach to feature ranking for classification tasks, called in what follows greedy feature selection. In statistical learning, feature selection is usually realized by means of methods that are independent of the classifier applied to perform the prediction using that reduced number of features. Instead, the greedy feature selection identifies the most important feature at each step and according to the selected classifier. The benefits of such scheme are investigated in terms of model capacity indicators, such as the Vapnik-Chervonenkis dimension or the kernel alignment. This theoretical study proves that the iterative greedy algorithm is able to construct classifiers whose complexity capacity grows at each step. The proposed method is then tested numerically on various datasets and compared to the state-of-the-art techniques. The results show that our iterative scheme is able to truly capture only a few relevant features, and may improve, especially for real and noisy data, the accuracy scores of other techniques. The greedy scheme is also applied to the challenging application of predicting geo-effective manifestations of the active Sun.</p>\",\"PeriodicalId\":22058,\"journal\":{\"name\":\"Statistics and Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics and Computing\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11222-024-10460-2\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics and Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11222-024-10460-2","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Classifier-dependent feature selection via greedy methods
The purpose of this study is to introduce a new approach to feature ranking for classification tasks, called in what follows greedy feature selection. In statistical learning, feature selection is usually realized by means of methods that are independent of the classifier applied to perform the prediction using that reduced number of features. Instead, the greedy feature selection identifies the most important feature at each step and according to the selected classifier. The benefits of such scheme are investigated in terms of model capacity indicators, such as the Vapnik-Chervonenkis dimension or the kernel alignment. This theoretical study proves that the iterative greedy algorithm is able to construct classifiers whose complexity capacity grows at each step. The proposed method is then tested numerically on various datasets and compared to the state-of-the-art techniques. The results show that our iterative scheme is able to truly capture only a few relevant features, and may improve, especially for real and noisy data, the accuracy scores of other techniques. The greedy scheme is also applied to the challenging application of predicting geo-effective manifestations of the active Sun.
期刊介绍:
Statistics and Computing is a bi-monthly refereed journal which publishes papers covering the range of the interface between the statistical and computing sciences.
In particular, it addresses the use of statistical concepts in computing science, for example in machine learning, computer vision and data analytics, as well as the use of computers in data modelling, prediction and analysis. Specific topics which are covered include: techniques for evaluating analytically intractable problems such as bootstrap resampling, Markov chain Monte Carlo, sequential Monte Carlo, approximate Bayesian computation, search and optimization methods, stochastic simulation and Monte Carlo, graphics, computer environments, statistical approaches to software errors, information retrieval, machine learning, statistics of databases and database technology, huge data sets and big data analytics, computer algebra, graphical models, image processing, tomography, inverse problems and uncertainty quantification.
In addition, the journal contains original research reports, authoritative review papers, discussed papers, and occasional special issues on particular topics or carrying proceedings of relevant conferences. Statistics and Computing also publishes book review and software review sections.