利用统计和机器学习模型评估环境时间序列的可预测性

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Matthew Bonas, Abhirup Datta, Christopher K. Wikle, Edward L. Boone, Faten S. Alamri, Bhava Vyasa Hari, Indulekha Kavila, Susan J. Simmons, Shannon M. Jarvis, Wesley S. Burr, Daniel E. Pagendam, Won Chang, Stefano Castruccio
{"title":"利用统计和机器学习模型评估环境时间序列的可预测性","authors":"Matthew Bonas, Abhirup Datta, Christopher K. Wikle, Edward L. Boone, Faten S. Alamri, Bhava Vyasa Hari, Indulekha Kavila, Susan J. Simmons, Shannon M. Jarvis, Wesley S. Burr, Daniel E. Pagendam, Won Chang, Stefano Castruccio","doi":"10.1002/env.2864","DOIUrl":null,"url":null,"abstract":"The ever increasing popularity of machine learning methods in virtually all areas of science, engineering and beyond is poised to put established statistical modeling approaches into question. Environmental statistics is no exception, as popular constructs such as neural networks and decision trees are now routinely used to provide forecasts of physical processes ranging from air pollution to meteorology. This presents both challenges and opportunities to the statistical community, which could contribute to the machine learning literature with a model‐based approach with formal uncertainty quantification. Should, however, classical statistical methodologies be discarded altogether in environmental statistics, and should our contribution be focused on formalizing machine learning constructs? This work aims at providing some answers to this thought‐provoking question with two time series case studies where selected models from both the statistical and machine learning literature are compared in terms of forecasting skills, uncertainty quantification and computational time. Relative merits of both class of approaches are discussed, and broad open questions are formulated as a baseline for a discussion on the topic.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessing predictability of environmental time series with statistical and machine learning models\",\"authors\":\"Matthew Bonas, Abhirup Datta, Christopher K. Wikle, Edward L. Boone, Faten S. Alamri, Bhava Vyasa Hari, Indulekha Kavila, Susan J. Simmons, Shannon M. Jarvis, Wesley S. Burr, Daniel E. Pagendam, Won Chang, Stefano Castruccio\",\"doi\":\"10.1002/env.2864\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ever increasing popularity of machine learning methods in virtually all areas of science, engineering and beyond is poised to put established statistical modeling approaches into question. Environmental statistics is no exception, as popular constructs such as neural networks and decision trees are now routinely used to provide forecasts of physical processes ranging from air pollution to meteorology. This presents both challenges and opportunities to the statistical community, which could contribute to the machine learning literature with a model‐based approach with formal uncertainty quantification. Should, however, classical statistical methodologies be discarded altogether in environmental statistics, and should our contribution be focused on formalizing machine learning constructs? This work aims at providing some answers to this thought‐provoking question with two time series case studies where selected models from both the statistical and machine learning literature are compared in terms of forecasting skills, uncertainty quantification and computational time. Relative merits of both class of approaches are discussed, and broad open questions are formulated as a baseline for a discussion on the topic.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1002/env.2864\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/env.2864","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

机器学习方法在科学、工程及其他几乎所有领域的应用日益普及,这将使既定的统计建模方法受到质疑。环境统计也不例外,因为神经网络和决策树等流行的结构现在已被常规用于提供从空气污染到气象学等物理过程的预测。这给统计界带来了挑战和机遇,统计界可以通过基于模型的方法和正式的不确定性量化,为机器学习文献做出贡献。然而,在环境统计中是否应该完全抛弃传统的统计方法,我们的贡献是否应该集中在机器学习构造的形式化上?这项工作旨在通过两个时间序列案例研究,从预测技能、不确定性量化和计算时间等方面对统计文献和机器学习文献中的选定模型进行比较,从而为这一发人深省的问题提供一些答案。讨论了这两类方法的相对优点,并提出了广泛的开放性问题,作为讨论该主题的基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Assessing predictability of environmental time series with statistical and machine learning models
The ever increasing popularity of machine learning methods in virtually all areas of science, engineering and beyond is poised to put established statistical modeling approaches into question. Environmental statistics is no exception, as popular constructs such as neural networks and decision trees are now routinely used to provide forecasts of physical processes ranging from air pollution to meteorology. This presents both challenges and opportunities to the statistical community, which could contribute to the machine learning literature with a model‐based approach with formal uncertainty quantification. Should, however, classical statistical methodologies be discarded altogether in environmental statistics, and should our contribution be focused on formalizing machine learning constructs? This work aims at providing some answers to this thought‐provoking question with two time series case studies where selected models from both the statistical and machine learning literature are compared in terms of forecasting skills, uncertainty quantification and computational time. Relative merits of both class of approaches are discussed, and broad open questions are formulated as a baseline for a discussion on the topic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信