{"title":"关于 Sp(N) 和 G2 的马蒂厄猜想","authors":"Kevin Zwart","doi":"10.1063/5.0206983","DOIUrl":null,"url":null,"abstract":"As a direct continuation of Zwart [J. Math. Phys. 64(10), 101701 (2023)], which is built on the work of Müger and Tuset [Indagationes Math. 35(1), 114 (2024)], we reduce the Mathieu conjecture, formulated by Mathieu [Algèbra Non Commutative, Groupes Quantiques et Invariants, edited by Alex, J. and Cauchon, G. (Société Mathématique de France, Reims, 1997), Vol. 2, pp. 263–279], for Sp(N) and G2 to a conjecture involving functions over Rn×(S1)m with n,m∈N0. The proofs rely on Euler-style parametrizations of these groups, a specific version of the KAK decomposition, which we discuss and prove.","PeriodicalId":16174,"journal":{"name":"Journal of Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Mathieu conjecture for Sp(N) and G2\",\"authors\":\"Kevin Zwart\",\"doi\":\"10.1063/5.0206983\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As a direct continuation of Zwart [J. Math. Phys. 64(10), 101701 (2023)], which is built on the work of Müger and Tuset [Indagationes Math. 35(1), 114 (2024)], we reduce the Mathieu conjecture, formulated by Mathieu [Algèbra Non Commutative, Groupes Quantiques et Invariants, edited by Alex, J. and Cauchon, G. (Société Mathématique de France, Reims, 1997), Vol. 2, pp. 263–279], for Sp(N) and G2 to a conjecture involving functions over Rn×(S1)m with n,m∈N0. The proofs rely on Euler-style parametrizations of these groups, a specific version of the KAK decomposition, which we discuss and prove.\",\"PeriodicalId\":16174,\"journal\":{\"name\":\"Journal of Mathematical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0206983\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0206983","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
摘要
作为 Zwart [J. Math. Phys. 64(10), 101701 (2023)]在 Müger 和 Tuset [Indagationes Math. 35(1), 114 (2024)]工作基础上的直接延续,我们将 Mathieu [Algèbra Non Commutative, Groupes Quantiques et Invariants, edited by Alex, J. and Cauchon, G. (Société Mathématique de France, Reims, 1997, Vol. 2, pp.and Cauchon, G. (Société Mathématique de France, Reims, 1997), Vol. 2, pp.证明依赖于这些群的欧拉式参数化,即 KAK 分解的一个特定版本,我们对其进行了讨论和证明。
As a direct continuation of Zwart [J. Math. Phys. 64(10), 101701 (2023)], which is built on the work of Müger and Tuset [Indagationes Math. 35(1), 114 (2024)], we reduce the Mathieu conjecture, formulated by Mathieu [Algèbra Non Commutative, Groupes Quantiques et Invariants, edited by Alex, J. and Cauchon, G. (Société Mathématique de France, Reims, 1997), Vol. 2, pp. 263–279], for Sp(N) and G2 to a conjecture involving functions over Rn×(S1)m with n,m∈N0. The proofs rely on Euler-style parametrizations of these groups, a specific version of the KAK decomposition, which we discuss and prove.
期刊介绍:
Since 1960, the Journal of Mathematical Physics (JMP) has published some of the best papers from outstanding mathematicians and physicists. JMP was the first journal in the field of mathematical physics and publishes research that connects the application of mathematics to problems in physics, as well as illustrates the development of mathematical methods for such applications and for the formulation of physical theories.
The Journal of Mathematical Physics (JMP) features content in all areas of mathematical physics. Specifically, the articles focus on areas of research that illustrate the application of mathematics to problems in physics, the development of mathematical methods for such applications, and for the formulation of physical theories. The mathematics featured in the articles are written so that theoretical physicists can understand them. JMP also publishes review articles on mathematical subjects relevant to physics as well as special issues that combine manuscripts on a topic of current interest to the mathematical physics community.
JMP welcomes original research of the highest quality in all active areas of mathematical physics, including the following:
Partial Differential Equations
Representation Theory and Algebraic Methods
Many Body and Condensed Matter Physics
Quantum Mechanics - General and Nonrelativistic
Quantum Information and Computation
Relativistic Quantum Mechanics, Quantum Field Theory, Quantum Gravity, and String Theory
General Relativity and Gravitation
Dynamical Systems
Classical Mechanics and Classical Fields
Fluids
Statistical Physics
Methods of Mathematical Physics.