布雷格曼近端方法的收敛速度:局部几何VS正规性VS锐利性

IF 2.6 1区 数学 Q1 MATHEMATICS, APPLIED
Waïss Azizian, Franck Iutzeler, Jérôme Malick, Panayotis Mertikopoulos
{"title":"布雷格曼近端方法的收敛速度:局部几何VS正规性VS锐利性","authors":"Waïss Azizian, Franck Iutzeler, Jérôme Malick, Panayotis Mertikopoulos","doi":"10.1137/23m1580218","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Optimization, Volume 34, Issue 3, Page 2440-2471, September 2024. <br/> Abstract. We examine the last-iterate convergence rate of Bregman proximal methods—from mirror descent to mirror-prox and its optimistic variants—as a function of the local geometry induced by the prox-mapping defining the method. For generality, we focus on local solutions of constrained, nonmonotone variational inequalities, and we show that the convergence rate of a given method depends sharply on its associated Legendre exponent, a notion that measures the growth rate of the underlying Bregman function (Euclidean, entropic, or other) near a solution. In particular, we show that boundary solutions exhibit a stark separation of regimes between methods with a zero and nonzero Legendre exponent: The former converge at a linear rate, while the latter converge, in general, sublinearly. This dichotomy becomes even more pronounced in linearly constrained problems where methods with entropic regularization achieve a linear convergence rate along sharp directions, compared to convergence in a finite number of steps under Euclidean regularization.","PeriodicalId":49529,"journal":{"name":"SIAM Journal on Optimization","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Rate of Convergence of Bregman Proximal Methods: Local Geometry Versus Regularity Versus Sharpness\",\"authors\":\"Waïss Azizian, Franck Iutzeler, Jérôme Malick, Panayotis Mertikopoulos\",\"doi\":\"10.1137/23m1580218\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Optimization, Volume 34, Issue 3, Page 2440-2471, September 2024. <br/> Abstract. We examine the last-iterate convergence rate of Bregman proximal methods—from mirror descent to mirror-prox and its optimistic variants—as a function of the local geometry induced by the prox-mapping defining the method. For generality, we focus on local solutions of constrained, nonmonotone variational inequalities, and we show that the convergence rate of a given method depends sharply on its associated Legendre exponent, a notion that measures the growth rate of the underlying Bregman function (Euclidean, entropic, or other) near a solution. In particular, we show that boundary solutions exhibit a stark separation of regimes between methods with a zero and nonzero Legendre exponent: The former converge at a linear rate, while the latter converge, in general, sublinearly. This dichotomy becomes even more pronounced in linearly constrained problems where methods with entropic regularization achieve a linear convergence rate along sharp directions, compared to convergence in a finite number of steps under Euclidean regularization.\",\"PeriodicalId\":49529,\"journal\":{\"name\":\"SIAM Journal on Optimization\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1580218\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1580218","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

SIAM 优化期刊》,第 34 卷第 3 期,第 2440-2471 页,2024 年 9 月。 摘要我们研究了布雷格曼近似方法--从镜像后裔到镜像近似及其乐观变体--的末次迭代收敛率,它是定义该方法的近似映射所引起的局部几何的函数。我们表明,给定方法的收敛速率与相关的 Legendre 指数密切相关,而 Legendre 指数是一个衡量解附近基本 Bregman 函数(欧氏、熵或其他)增长率的概念。我们特别指出,边界解在 Legendre 指数为零和非零的方法之间表现出截然不同的状态:前者以线性速率收敛,而后者一般以亚线性速率收敛。这种二分法在线性约束问题中变得更加明显,与欧几里得正则化的有限步数收敛相比,熵正则化方法在尖锐方向上实现了线性收敛率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Rate of Convergence of Bregman Proximal Methods: Local Geometry Versus Regularity Versus Sharpness
SIAM Journal on Optimization, Volume 34, Issue 3, Page 2440-2471, September 2024.
Abstract. We examine the last-iterate convergence rate of Bregman proximal methods—from mirror descent to mirror-prox and its optimistic variants—as a function of the local geometry induced by the prox-mapping defining the method. For generality, we focus on local solutions of constrained, nonmonotone variational inequalities, and we show that the convergence rate of a given method depends sharply on its associated Legendre exponent, a notion that measures the growth rate of the underlying Bregman function (Euclidean, entropic, or other) near a solution. In particular, we show that boundary solutions exhibit a stark separation of regimes between methods with a zero and nonzero Legendre exponent: The former converge at a linear rate, while the latter converge, in general, sublinearly. This dichotomy becomes even more pronounced in linearly constrained problems where methods with entropic regularization achieve a linear convergence rate along sharp directions, compared to convergence in a finite number of steps under Euclidean regularization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
SIAM Journal on Optimization
SIAM Journal on Optimization 数学-应用数学
CiteScore
5.30
自引率
9.70%
发文量
101
审稿时长
6-12 weeks
期刊介绍: The SIAM Journal on Optimization contains research articles on the theory and practice of optimization. The areas addressed include linear and quadratic programming, convex programming, nonlinear programming, complementarity problems, stochastic optimization, combinatorial optimization, integer programming, and convex, nonsmooth and variational analysis. Contributions may emphasize optimization theory, algorithms, software, computational practice, applications, or the links between these subjects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信