Naglaa S. Ashmawy, Nilofar Nilofar, Gokhan Zengin, Omayma A. Eldahshan
{"title":"枳壳果皮精油的代谢谱分析和酶抑制活性","authors":"Naglaa S. Ashmawy, Nilofar Nilofar, Gokhan Zengin, Omayma A. Eldahshan","doi":"10.1186/s12906-024-04505-2","DOIUrl":null,"url":null,"abstract":"Bitter orange (Citrus aurantium) is a fruiting shrub native to tropical and subtropical countries around the world and cultivated in many regions due to its nutraceutical value. The current study investigated the metabolic profiling and enzyme inhibitory activities of volatile constituents derived from the C. aurantium peel cultivated in Egypt by three different extraction methods. The volatile chemical constituents of the peel of C. aurantium were isolated using three methods; steam distillation (SD), hydrodistillation (HD), and microwave-assisted hydrodistillation (MAHD), and then were investigated by GC-MS. The antioxidant potential was evaluated by different assays such as DPPH, ABTS, FRAP, CUPRAC, and phosphomolybdenum and metal chelating potential. Moreover, the effect of enzyme inhibition of the three essential oils was tested using BChE, AChE, tyrosinase, glucosidase, as well as amylase assays. A total of six compounds were detected by GC/MS analysis. The major constituent obtained by all three extraction methods was limonene (98.86% by SD, 98.68% by HD, and 99.23% by MAHD). Differences in the composition of the compounds of the three oils were observed. The hydrodistillation technique has yielded the highest number of compounds, notably two oxygenated monoterpenes: linalool (0.12%) and α-terpineol acetate (0.1%). In our study differences in the extraction methods of C. aurantium peel oils resulted in differences in the oils’ chemical composition. Citrus essential oils and their components showed potential antioxidant, anticholinesterase, antimelanogenesis, and antidiabetic activities. The presence of linalool and α-terpineol acetate may explain the superior activity observed for the oil isolated by HD in both radical scavenging and AChE inhibition assays, as well as in the enzyme inhibition assays.","PeriodicalId":9132,"journal":{"name":"BMC Complementary and Alternative Medicine","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metabolic profiling and enzyme inhibitory activity of the essential oil of citrus aurantium fruit peel\",\"authors\":\"Naglaa S. Ashmawy, Nilofar Nilofar, Gokhan Zengin, Omayma A. Eldahshan\",\"doi\":\"10.1186/s12906-024-04505-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bitter orange (Citrus aurantium) is a fruiting shrub native to tropical and subtropical countries around the world and cultivated in many regions due to its nutraceutical value. The current study investigated the metabolic profiling and enzyme inhibitory activities of volatile constituents derived from the C. aurantium peel cultivated in Egypt by three different extraction methods. The volatile chemical constituents of the peel of C. aurantium were isolated using three methods; steam distillation (SD), hydrodistillation (HD), and microwave-assisted hydrodistillation (MAHD), and then were investigated by GC-MS. The antioxidant potential was evaluated by different assays such as DPPH, ABTS, FRAP, CUPRAC, and phosphomolybdenum and metal chelating potential. Moreover, the effect of enzyme inhibition of the three essential oils was tested using BChE, AChE, tyrosinase, glucosidase, as well as amylase assays. A total of six compounds were detected by GC/MS analysis. The major constituent obtained by all three extraction methods was limonene (98.86% by SD, 98.68% by HD, and 99.23% by MAHD). Differences in the composition of the compounds of the three oils were observed. The hydrodistillation technique has yielded the highest number of compounds, notably two oxygenated monoterpenes: linalool (0.12%) and α-terpineol acetate (0.1%). In our study differences in the extraction methods of C. aurantium peel oils resulted in differences in the oils’ chemical composition. Citrus essential oils and their components showed potential antioxidant, anticholinesterase, antimelanogenesis, and antidiabetic activities. The presence of linalool and α-terpineol acetate may explain the superior activity observed for the oil isolated by HD in both radical scavenging and AChE inhibition assays, as well as in the enzyme inhibition assays.\",\"PeriodicalId\":9132,\"journal\":{\"name\":\"BMC Complementary and Alternative Medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Complementary and Alternative Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s12906-024-04505-2\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Complementary and Alternative Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s12906-024-04505-2","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
Metabolic profiling and enzyme inhibitory activity of the essential oil of citrus aurantium fruit peel
Bitter orange (Citrus aurantium) is a fruiting shrub native to tropical and subtropical countries around the world and cultivated in many regions due to its nutraceutical value. The current study investigated the metabolic profiling and enzyme inhibitory activities of volatile constituents derived from the C. aurantium peel cultivated in Egypt by three different extraction methods. The volatile chemical constituents of the peel of C. aurantium were isolated using three methods; steam distillation (SD), hydrodistillation (HD), and microwave-assisted hydrodistillation (MAHD), and then were investigated by GC-MS. The antioxidant potential was evaluated by different assays such as DPPH, ABTS, FRAP, CUPRAC, and phosphomolybdenum and metal chelating potential. Moreover, the effect of enzyme inhibition of the three essential oils was tested using BChE, AChE, tyrosinase, glucosidase, as well as amylase assays. A total of six compounds were detected by GC/MS analysis. The major constituent obtained by all three extraction methods was limonene (98.86% by SD, 98.68% by HD, and 99.23% by MAHD). Differences in the composition of the compounds of the three oils were observed. The hydrodistillation technique has yielded the highest number of compounds, notably two oxygenated monoterpenes: linalool (0.12%) and α-terpineol acetate (0.1%). In our study differences in the extraction methods of C. aurantium peel oils resulted in differences in the oils’ chemical composition. Citrus essential oils and their components showed potential antioxidant, anticholinesterase, antimelanogenesis, and antidiabetic activities. The presence of linalool and α-terpineol acetate may explain the superior activity observed for the oil isolated by HD in both radical scavenging and AChE inhibition assays, as well as in the enzyme inhibition assays.
期刊介绍:
BMC Complementary Medicine and Therapies is an open access journal publishing original peer-reviewed research articles on interventions and resources that complement or replace conventional therapies, with a specific emphasis on research that explores the biological mechanisms of action, as well as their efficacy, safety, costs, patterns of use and/or implementation.