网络侧观察线性匪帮

IF 3 3区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Avik Kar;Rahul Singh;Fang Liu;Xin Liu;Ness B. Shroff
{"title":"网络侧观察线性匪帮","authors":"Avik Kar;Rahul Singh;Fang Liu;Xin Liu;Ness B. Shroff","doi":"10.1109/TNET.2024.3422323","DOIUrl":null,"url":null,"abstract":"We investigate linear bandits in a network setting in the presence of side-observations across nodes in order to design recommendation algorithms for users connected via social networks. Users in social networks respond to their friends’ activity and, hence, provide information about each other’s preferences. In our model, when a learning algorithm recommends an article to a user, not only does it observe her response (e.g., an ad click) but also the side-observations, i.e., the response of her neighbors if they were presented with the same article. We model these observation dependencies by a graph \n<inline-formula> <tex-math>$\\mathcal {G}$ </tex-math></inline-formula>\n in which nodes correspond to users and edges to social links. We derive a problem/instance-dependent lower-bound on the regret of any consistent algorithm. We propose an optimization-based data-driven learning algorithm that utilizes the structure of \n<inline-formula> <tex-math>$\\mathcal {G}$ </tex-math></inline-formula>\n in order to make recommendations to users and show that it is asymptotically optimal, in the sense that its regret matches the lower-bound as the number of rounds \n<inline-formula> <tex-math>$T\\to \\infty $ </tex-math></inline-formula>\n. We show that this asymptotically optimal regret is upper-bounded as \n<inline-formula> <tex-math>$O\\left ({{|\\chi (\\mathcal {G})|\\log T}}\\right)$ </tex-math></inline-formula>\n, where \n<inline-formula> <tex-math>$|\\chi (\\mathcal {G})|$ </tex-math></inline-formula>\n is the domination number of \n<inline-formula> <tex-math>$\\mathcal {G}$ </tex-math></inline-formula>\n. In contrast, a naive application of the existing learning algorithms results in \n<inline-formula> <tex-math>$O\\left ({{N\\log T}}\\right)$ </tex-math></inline-formula>\n regret, where N is the number of users.","PeriodicalId":13443,"journal":{"name":"IEEE/ACM Transactions on Networking","volume":"32 5","pages":"4222-4237"},"PeriodicalIF":3.0000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Linear Bandits With Side Observations on Networks\",\"authors\":\"Avik Kar;Rahul Singh;Fang Liu;Xin Liu;Ness B. Shroff\",\"doi\":\"10.1109/TNET.2024.3422323\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate linear bandits in a network setting in the presence of side-observations across nodes in order to design recommendation algorithms for users connected via social networks. Users in social networks respond to their friends’ activity and, hence, provide information about each other’s preferences. In our model, when a learning algorithm recommends an article to a user, not only does it observe her response (e.g., an ad click) but also the side-observations, i.e., the response of her neighbors if they were presented with the same article. We model these observation dependencies by a graph \\n<inline-formula> <tex-math>$\\\\mathcal {G}$ </tex-math></inline-formula>\\n in which nodes correspond to users and edges to social links. We derive a problem/instance-dependent lower-bound on the regret of any consistent algorithm. We propose an optimization-based data-driven learning algorithm that utilizes the structure of \\n<inline-formula> <tex-math>$\\\\mathcal {G}$ </tex-math></inline-formula>\\n in order to make recommendations to users and show that it is asymptotically optimal, in the sense that its regret matches the lower-bound as the number of rounds \\n<inline-formula> <tex-math>$T\\\\to \\\\infty $ </tex-math></inline-formula>\\n. We show that this asymptotically optimal regret is upper-bounded as \\n<inline-formula> <tex-math>$O\\\\left ({{|\\\\chi (\\\\mathcal {G})|\\\\log T}}\\\\right)$ </tex-math></inline-formula>\\n, where \\n<inline-formula> <tex-math>$|\\\\chi (\\\\mathcal {G})|$ </tex-math></inline-formula>\\n is the domination number of \\n<inline-formula> <tex-math>$\\\\mathcal {G}$ </tex-math></inline-formula>\\n. In contrast, a naive application of the existing learning algorithms results in \\n<inline-formula> <tex-math>$O\\\\left ({{N\\\\log T}}\\\\right)$ </tex-math></inline-formula>\\n regret, where N is the number of users.\",\"PeriodicalId\":13443,\"journal\":{\"name\":\"IEEE/ACM Transactions on Networking\",\"volume\":\"32 5\",\"pages\":\"4222-4237\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE/ACM Transactions on Networking\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10589477/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ACM Transactions on Networking","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10589477/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了在存在跨节点侧观察的网络环境中的线性匪帮,以便为通过社交网络连接的用户设计推荐算法。社交网络中的用户会对其好友的活动做出反应,从而提供有关彼此偏好的信息。在我们的模型中,当学习算法向用户推荐一篇文章时,不仅要观察用户的反应(如广告点击),还要观察旁观者的反应,即用户邻居在看到同一篇文章时的反应。我们通过图 $mathcal {G}$来模拟这些观察依赖关系,其中节点对应用户,边对应社交链接。我们对任何一致算法的遗憾值推导出了一个与问题/实例相关的下限。我们提出了一种基于优化的数据驱动学习算法,该算法利用 $\mathcal {G}$ 的结构向用户进行推荐,并证明该算法是渐进最优的,即其遗憾与下限相匹配的回合数为 $T\to \infty $。我们证明了这种渐进最优遗憾的上界为 $O\left ({{|\chi (\mathcal {G})|\log T}}\right)$ ,其中 $|\chi (\mathcal {G})|$ 是 $\mathcal {G}$ 的支配数。 相比之下,现有学习算法的天真应用会导致 $O\left ({{N\log T}}\right)$ 遗憾,其中 N 是用户数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Linear Bandits With Side Observations on Networks
We investigate linear bandits in a network setting in the presence of side-observations across nodes in order to design recommendation algorithms for users connected via social networks. Users in social networks respond to their friends’ activity and, hence, provide information about each other’s preferences. In our model, when a learning algorithm recommends an article to a user, not only does it observe her response (e.g., an ad click) but also the side-observations, i.e., the response of her neighbors if they were presented with the same article. We model these observation dependencies by a graph $\mathcal {G}$ in which nodes correspond to users and edges to social links. We derive a problem/instance-dependent lower-bound on the regret of any consistent algorithm. We propose an optimization-based data-driven learning algorithm that utilizes the structure of $\mathcal {G}$ in order to make recommendations to users and show that it is asymptotically optimal, in the sense that its regret matches the lower-bound as the number of rounds $T\to \infty $ . We show that this asymptotically optimal regret is upper-bounded as $O\left ({{|\chi (\mathcal {G})|\log T}}\right)$ , where $|\chi (\mathcal {G})|$ is the domination number of $\mathcal {G}$ . In contrast, a naive application of the existing learning algorithms results in $O\left ({{N\log T}}\right)$ regret, where N is the number of users.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE/ACM Transactions on Networking
IEEE/ACM Transactions on Networking 工程技术-电信学
CiteScore
8.20
自引率
5.40%
发文量
246
审稿时长
4-8 weeks
期刊介绍: The IEEE/ACM Transactions on Networking’s high-level objective is to publish high-quality, original research results derived from theoretical or experimental exploration of the area of communication/computer networking, covering all sorts of information transport networks over all sorts of physical layer technologies, both wireline (all kinds of guided media: e.g., copper, optical) and wireless (e.g., radio-frequency, acoustic (e.g., underwater), infra-red), or hybrids of these. The journal welcomes applied contributions reporting on novel experiences and experiments with actual systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信