{"title":"一般耦合衍生非线性薛定谔系统:达尔布变换和孤子解","authors":"Yonghui Kuang","doi":"10.1007/s44198-024-00212-1","DOIUrl":null,"url":null,"abstract":"<p>In this work we present a general coupled derivative nonlinear Schrödinger system. We construct the corresponding <i>N</i>-fold Darboux transform and generalized Darboux transform. Under this construction, we give different soliton solutions and plot their figures describing the soliton characteristics and dynamical behaviors, including higher-order soliton and rouge wave solution etc.</p>","PeriodicalId":48904,"journal":{"name":"Journal of Nonlinear Mathematical Physics","volume":"70 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A General Coupled Derivative Nonlinear Schrödinger System: Darboux Transformation and Soliton Solutions\",\"authors\":\"Yonghui Kuang\",\"doi\":\"10.1007/s44198-024-00212-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this work we present a general coupled derivative nonlinear Schrödinger system. We construct the corresponding <i>N</i>-fold Darboux transform and generalized Darboux transform. Under this construction, we give different soliton solutions and plot their figures describing the soliton characteristics and dynamical behaviors, including higher-order soliton and rouge wave solution etc.</p>\",\"PeriodicalId\":48904,\"journal\":{\"name\":\"Journal of Nonlinear Mathematical Physics\",\"volume\":\"70 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nonlinear Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1007/s44198-024-00212-1\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonlinear Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s44198-024-00212-1","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
在这项工作中,我们提出了一个一般耦合导数非线性薛定谔系统。我们构建了相应的 N 折达布克斯变换和广义达布克斯变换。在这一构造下,我们给出了不同的孤子解,并绘制了描述孤子特性和动力学行为的图形,包括高阶孤子和胭脂波解等。
A General Coupled Derivative Nonlinear Schrödinger System: Darboux Transformation and Soliton Solutions
In this work we present a general coupled derivative nonlinear Schrödinger system. We construct the corresponding N-fold Darboux transform and generalized Darboux transform. Under this construction, we give different soliton solutions and plot their figures describing the soliton characteristics and dynamical behaviors, including higher-order soliton and rouge wave solution etc.
期刊介绍:
Journal of Nonlinear Mathematical Physics (JNMP) publishes research papers on fundamental mathematical and computational methods in mathematical physics in the form of Letters, Articles, and Review Articles.
Journal of Nonlinear Mathematical Physics is a mathematical journal devoted to the publication of research papers concerned with the description, solution, and applications of nonlinear problems in physics and mathematics.
The main subjects are:
-Nonlinear Equations of Mathematical Physics-
Quantum Algebras and Integrability-
Discrete Integrable Systems and Discrete Geometry-
Applications of Lie Group Theory and Lie Algebras-
Non-Commutative Geometry-
Super Geometry and Super Integrable System-
Integrability and Nonintegrability, Painleve Analysis-
Inverse Scattering Method-
Geometry of Soliton Equations and Applications of Twistor Theory-
Classical and Quantum Many Body Problems-
Deformation and Geometric Quantization-
Instanton, Monopoles and Gauge Theory-
Differential Geometry and Mathematical Physics