最大子群为 2 弱或正常的有限群

IF 1 3区 数学 Q1 MATHEMATICS
Changguo Shao, Antonio Beltrán
{"title":"最大子群为 2 弱或正常的有限群","authors":"Changguo Shao, Antonio Beltrán","doi":"10.1007/s40840-024-01743-y","DOIUrl":null,"url":null,"abstract":"<p>We describe the structure of those finite groups whose maximal subgroups are either 2-nilpotent or normal. Among other properties, we prove that if such a group <i>G</i> does not have any non-trivial quotient that is a 2-group, then <i>G</i> is solvable. Also, if <i>G</i> is a solvable group satisfying the above conditions, then the 2-length of <i>G</i> is less than or equal to 2. If, on the contrary, <i>G</i> is not solvable, then <i>G</i> has exactly one non-abelian principal factor and the unique simple group involved is one of the groups <span>\\(\\textrm{PSL}_2(p^{2^a})\\)</span>, where <i>p</i> is an odd prime and <span>\\(a\\ge 1\\)</span>, or <i>p</i> is a prime satisfying <span>\\(p\\equiv \\pm 1\\)</span> <span>\\((\\textrm{mod}~ 8)\\)</span> and <span>\\(a=0\\)</span>.</p>","PeriodicalId":50718,"journal":{"name":"Bulletin of the Malaysian Mathematical Sciences Society","volume":"23 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finite Groups Whose Maximal Subgroups are 2-Nilpotent or Normal\",\"authors\":\"Changguo Shao, Antonio Beltrán\",\"doi\":\"10.1007/s40840-024-01743-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We describe the structure of those finite groups whose maximal subgroups are either 2-nilpotent or normal. Among other properties, we prove that if such a group <i>G</i> does not have any non-trivial quotient that is a 2-group, then <i>G</i> is solvable. Also, if <i>G</i> is a solvable group satisfying the above conditions, then the 2-length of <i>G</i> is less than or equal to 2. If, on the contrary, <i>G</i> is not solvable, then <i>G</i> has exactly one non-abelian principal factor and the unique simple group involved is one of the groups <span>\\\\(\\\\textrm{PSL}_2(p^{2^a})\\\\)</span>, where <i>p</i> is an odd prime and <span>\\\\(a\\\\ge 1\\\\)</span>, or <i>p</i> is a prime satisfying <span>\\\\(p\\\\equiv \\\\pm 1\\\\)</span> <span>\\\\((\\\\textrm{mod}~ 8)\\\\)</span> and <span>\\\\(a=0\\\\)</span>.</p>\",\"PeriodicalId\":50718,\"journal\":{\"name\":\"Bulletin of the Malaysian Mathematical Sciences Society\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Malaysian Mathematical Sciences Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s40840-024-01743-y\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Malaysian Mathematical Sciences Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40840-024-01743-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们描述了最大子群为 2-nilpotent 或正常的有限群的结构。除其他性质外,我们还证明,如果这样的群 G 没有任何非三维商是 2 群,那么 G 是可解的。此外,如果 G 是满足上述条件的可解群,那么 G 的 2 长小于或等于 2。相反,如果 G 不可解,那么 G 恰好有一个非阿贝尔主因子,并且所涉及的唯一简单群是 \(\textrm{PSL}_2(p^{2^a})\) 群之一,其中 p 是奇素数并且 \(a\ge 1\) 或者 p 是素数,满足 \(p\equiv\pm 1\) \((\textrm{mod}~ 8)\) 并且 \(a=0\).
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finite Groups Whose Maximal Subgroups are 2-Nilpotent or Normal

We describe the structure of those finite groups whose maximal subgroups are either 2-nilpotent or normal. Among other properties, we prove that if such a group G does not have any non-trivial quotient that is a 2-group, then G is solvable. Also, if G is a solvable group satisfying the above conditions, then the 2-length of G is less than or equal to 2. If, on the contrary, G is not solvable, then G has exactly one non-abelian principal factor and the unique simple group involved is one of the groups \(\textrm{PSL}_2(p^{2^a})\), where p is an odd prime and \(a\ge 1\), or p is a prime satisfying \(p\equiv \pm 1\) \((\textrm{mod}~ 8)\) and \(a=0\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
8.30%
发文量
176
审稿时长
3 months
期刊介绍: This journal publishes original research articles and expository survey articles in all branches of mathematics. Recent issues have included articles on such topics as Spectral synthesis for the operator space projective tensor product of C*-algebras; Topological structures on LA-semigroups; Implicit iteration methods for variational inequalities in Banach spaces; and The Quarter-Sweep Geometric Mean method for solving second kind linear fredholm integral equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信