{"title":"On Unique Minimal $$\\boldsymbol{L}^{\\boldsymbol{p}}$ -Norm Harmonic or Holomorphic Function Which Takes Given Value in a Fixed Point","authors":"T. Ł. Żynda","doi":"10.3103/s1068362324700134","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>First, it will be shown that Banach spaces <span>\\(V\\)</span> of harmonic or holomorphic functions with <span>\\(L^{p}\\)</span> norm satisfy minimal norm property, i.e., in any set</p><span>$$V_{z,c}:=\\{f\\in V\\>|\\>f(z)=c\\},$$</span><p>if nonempty, there is exactly one element with minimal norm. Later, it will be proved that this element depends continuously on a deformation of a norm and on an increasing sequence of domains in a precisely defined sense.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Unique Minimal $$\\\\boldsymbol{L}^{\\\\boldsymbol{p}}$$ -Norm Harmonic or Holomorphic Function Which Takes Given Value in a Fixed Point\",\"authors\":\"T. Ł. Żynda\",\"doi\":\"10.3103/s1068362324700134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>First, it will be shown that Banach spaces <span>\\\\(V\\\\)</span> of harmonic or holomorphic functions with <span>\\\\(L^{p}\\\\)</span> norm satisfy minimal norm property, i.e., in any set</p><span>$$V_{z,c}:=\\\\{f\\\\in V\\\\>|\\\\>f(z)=c\\\\},$$</span><p>if nonempty, there is exactly one element with minimal norm. Later, it will be proved that this element depends continuously on a deformation of a norm and on an increasing sequence of domains in a precisely defined sense.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3103/s1068362324700134\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3103/s1068362324700134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On Unique Minimal $$\boldsymbol{L}^{\boldsymbol{p}}$$ -Norm Harmonic or Holomorphic Function Which Takes Given Value in a Fixed Point
Abstract
First, it will be shown that Banach spaces \(V\) of harmonic or holomorphic functions with \(L^{p}\) norm satisfy minimal norm property, i.e., in any set
$$V_{z,c}:=\{f\in V\>|\>f(z)=c\},$$
if nonempty, there is exactly one element with minimal norm. Later, it will be proved that this element depends continuously on a deformation of a norm and on an increasing sequence of domains in a precisely defined sense.