On Unique Minimal $$\boldsymbol{L}^{\boldsymbol{p}}$ -Norm Harmonic or Holomorphic Function Which Takes Given Value in a Fixed Point

Pub Date : 2024-07-09 DOI:10.3103/s1068362324700134
T. Ł. Żynda
{"title":"On Unique Minimal $$\\boldsymbol{L}^{\\boldsymbol{p}}$ -Norm Harmonic or Holomorphic Function Which Takes Given Value in a Fixed Point","authors":"T. Ł. Żynda","doi":"10.3103/s1068362324700134","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>First, it will be shown that Banach spaces <span>\\(V\\)</span> of harmonic or holomorphic functions with <span>\\(L^{p}\\)</span> norm satisfy minimal norm property, i.e., in any set</p><span>$$V_{z,c}:=\\{f\\in V\\&gt;|\\&gt;f(z)=c\\},$$</span><p>if nonempty, there is exactly one element with minimal norm. Later, it will be proved that this element depends continuously on a deformation of a norm and on an increasing sequence of domains in a precisely defined sense.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Unique Minimal $$\\\\boldsymbol{L}^{\\\\boldsymbol{p}}$$ -Norm Harmonic or Holomorphic Function Which Takes Given Value in a Fixed Point\",\"authors\":\"T. Ł. Żynda\",\"doi\":\"10.3103/s1068362324700134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>First, it will be shown that Banach spaces <span>\\\\(V\\\\)</span> of harmonic or holomorphic functions with <span>\\\\(L^{p}\\\\)</span> norm satisfy minimal norm property, i.e., in any set</p><span>$$V_{z,c}:=\\\\{f\\\\in V\\\\&gt;|\\\\&gt;f(z)=c\\\\},$$</span><p>if nonempty, there is exactly one element with minimal norm. Later, it will be proved that this element depends continuously on a deformation of a norm and on an increasing sequence of domains in a precisely defined sense.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3103/s1068362324700134\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3103/s1068362324700134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要首先,我们将证明具有 \(L^{p}\) 准则的谐函数或全形函数的巴拿赫空间 \(V\) 满足最小准则性质,即在任意集合$$V_{z,c}:=\{f\in V\>|\>f(z)=c\}, $$如果非空,则正好有一个元素具有最小准则。稍后,我们将证明这个元素在精确定义的意义上连续依赖于规范的变形和域的递增序列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On Unique Minimal $$\boldsymbol{L}^{\boldsymbol{p}}$$ -Norm Harmonic or Holomorphic Function Which Takes Given Value in a Fixed Point

Abstract

First, it will be shown that Banach spaces \(V\) of harmonic or holomorphic functions with \(L^{p}\) norm satisfy minimal norm property, i.e., in any set

$$V_{z,c}:=\{f\in V\>|\>f(z)=c\},$$

if nonempty, there is exactly one element with minimal norm. Later, it will be proved that this element depends continuously on a deformation of a norm and on an increasing sequence of domains in a precisely defined sense.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信