为 SPD 矩阵保留子空间结构的几何统计

Cyrus Mostajeran, Nathaël Da Costa, Graham Van Goffrier, Rodolphe Sepulchre
{"title":"为 SPD 矩阵保留子空间结构的几何统计","authors":"Cyrus Mostajeran, Nathaël Da Costa, Graham Van Goffrier, Rodolphe Sepulchre","doi":"arxiv-2407.03382","DOIUrl":null,"url":null,"abstract":"We present a geometric framework for the processing of SPD-valued data that\npreserves subspace structures and is based on the efficient computation of\nextreme generalized eigenvalues. This is achieved through the use of the\nThompson geometry of the semidefinite cone. We explore a particular geodesic\nspace structure in detail and establish several properties associated with it.\nFinally, we review a novel inductive mean of SPD matrices based on this\ngeometry.","PeriodicalId":501215,"journal":{"name":"arXiv - STAT - Computation","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geometric statistics with subspace structure preservation for SPD matrices\",\"authors\":\"Cyrus Mostajeran, Nathaël Da Costa, Graham Van Goffrier, Rodolphe Sepulchre\",\"doi\":\"arxiv-2407.03382\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a geometric framework for the processing of SPD-valued data that\\npreserves subspace structures and is based on the efficient computation of\\nextreme generalized eigenvalues. This is achieved through the use of the\\nThompson geometry of the semidefinite cone. We explore a particular geodesic\\nspace structure in detail and establish several properties associated with it.\\nFinally, we review a novel inductive mean of SPD matrices based on this\\ngeometry.\",\"PeriodicalId\":501215,\"journal\":{\"name\":\"arXiv - STAT - Computation\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.03382\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.03382","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一个处理 SPD 值数据的几何框架,该框架保留了子空间结构,并以高效计算极端广义特征值为基础。这是通过使用半定锥的汤普森几何来实现的。我们详细探讨了一种特殊的大地空间结构,并建立了与之相关的几个属性。最后,我们回顾了基于这种几何的 SPD 矩阵的一种新颖的归纳平均值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geometric statistics with subspace structure preservation for SPD matrices
We present a geometric framework for the processing of SPD-valued data that preserves subspace structures and is based on the efficient computation of extreme generalized eigenvalues. This is achieved through the use of the Thompson geometry of the semidefinite cone. We explore a particular geodesic space structure in detail and establish several properties associated with it. Finally, we review a novel inductive mean of SPD matrices based on this geometry.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信