Pham Viet Hoa, Nguyen An Binh, Pham Viet Hong, Nguyen Ngoc An, Giang Thi Phuong Thao, Nguyen Cao Hanh, Phuong Thao Thi Ngo, Dieu Tien Bui
{"title":"一维深度学习驱动的地理空间分析用于绘制山洪灾害易感性地图:越南中北部案例研究","authors":"Pham Viet Hoa, Nguyen An Binh, Pham Viet Hong, Nguyen Ngoc An, Giang Thi Phuong Thao, Nguyen Cao Hanh, Phuong Thao Thi Ngo, Dieu Tien Bui","doi":"10.1007/s12145-024-01285-8","DOIUrl":null,"url":null,"abstract":"<p>Flash floods rank among the most catastrophic natural disasters worldwide, inflicting severe socio-economic, environmental, and human impacts. Consequently, accurately identifying areas at potential risk is of paramount importance. This study investigates the efficacy of Deep 1D-Convolutional Neural Networks (Deep 1D-CNN) in spatially predicting flash floods, with a specific focus on the frequent tropical cyclone-induced flash floods in Thanh Hoa province, North Central Vietnam. The Deep 1D-CNN was structured with four convolutional layers, two pooling layers, one flattened layer, and two fully connected layers, employing the ADAM algorithm for optimization and Mean Squared Error (MSE) for loss calculation. A geodatabase containing 2540 flash flood locations and 12 influencing factors was compiled using multi-source geospatial data. The database was used to train and check the model. The results indicate that the Deep 1D-CNN model achieved high predictive accuracy (90.2%), along with a Kappa value of 0.804 and an AUC (Area Under the Curve) of 0.969, surpassing the benchmark models such as SVM (Support Vector Machine) and LR (Logistic Regression). The study concludes that the Deep 1D-CNN model is a highly effective tool for modeling flash floods.</p>","PeriodicalId":49318,"journal":{"name":"Earth Science Informatics","volume":"40 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"One-dimensional deep learning driven geospatial analysis for flash flood susceptibility mapping: a case study in North Central Vietnam\",\"authors\":\"Pham Viet Hoa, Nguyen An Binh, Pham Viet Hong, Nguyen Ngoc An, Giang Thi Phuong Thao, Nguyen Cao Hanh, Phuong Thao Thi Ngo, Dieu Tien Bui\",\"doi\":\"10.1007/s12145-024-01285-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Flash floods rank among the most catastrophic natural disasters worldwide, inflicting severe socio-economic, environmental, and human impacts. Consequently, accurately identifying areas at potential risk is of paramount importance. This study investigates the efficacy of Deep 1D-Convolutional Neural Networks (Deep 1D-CNN) in spatially predicting flash floods, with a specific focus on the frequent tropical cyclone-induced flash floods in Thanh Hoa province, North Central Vietnam. The Deep 1D-CNN was structured with four convolutional layers, two pooling layers, one flattened layer, and two fully connected layers, employing the ADAM algorithm for optimization and Mean Squared Error (MSE) for loss calculation. A geodatabase containing 2540 flash flood locations and 12 influencing factors was compiled using multi-source geospatial data. The database was used to train and check the model. The results indicate that the Deep 1D-CNN model achieved high predictive accuracy (90.2%), along with a Kappa value of 0.804 and an AUC (Area Under the Curve) of 0.969, surpassing the benchmark models such as SVM (Support Vector Machine) and LR (Logistic Regression). The study concludes that the Deep 1D-CNN model is a highly effective tool for modeling flash floods.</p>\",\"PeriodicalId\":49318,\"journal\":{\"name\":\"Earth Science Informatics\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth Science Informatics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s12145-024-01285-8\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth Science Informatics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s12145-024-01285-8","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
One-dimensional deep learning driven geospatial analysis for flash flood susceptibility mapping: a case study in North Central Vietnam
Flash floods rank among the most catastrophic natural disasters worldwide, inflicting severe socio-economic, environmental, and human impacts. Consequently, accurately identifying areas at potential risk is of paramount importance. This study investigates the efficacy of Deep 1D-Convolutional Neural Networks (Deep 1D-CNN) in spatially predicting flash floods, with a specific focus on the frequent tropical cyclone-induced flash floods in Thanh Hoa province, North Central Vietnam. The Deep 1D-CNN was structured with four convolutional layers, two pooling layers, one flattened layer, and two fully connected layers, employing the ADAM algorithm for optimization and Mean Squared Error (MSE) for loss calculation. A geodatabase containing 2540 flash flood locations and 12 influencing factors was compiled using multi-source geospatial data. The database was used to train and check the model. The results indicate that the Deep 1D-CNN model achieved high predictive accuracy (90.2%), along with a Kappa value of 0.804 and an AUC (Area Under the Curve) of 0.969, surpassing the benchmark models such as SVM (Support Vector Machine) and LR (Logistic Regression). The study concludes that the Deep 1D-CNN model is a highly effective tool for modeling flash floods.
期刊介绍:
The Earth Science Informatics [ESIN] journal aims at rapid publication of high-quality, current, cutting-edge, and provocative scientific work in the area of Earth Science Informatics as it relates to Earth systems science and space science. This includes articles on the application of formal and computational methods, computational Earth science, spatial and temporal analyses, and all aspects of computer applications to the acquisition, storage, processing, interchange, and visualization of data and information about the materials, properties, processes, features, and phenomena that occur at all scales and locations in the Earth system’s five components (atmosphere, hydrosphere, geosphere, biosphere, cryosphere) and in space (see "About this journal" for more detail). The quarterly journal publishes research, methodology, and software articles, as well as editorials, comments, and book and software reviews. Review articles of relevant findings, topics, and methodologies are also considered.