关于科比第一类移动的潜在接触式类似物

Prerak Deep, Dheeraj Kulkarni
{"title":"关于科比第一类移动的潜在接触式类似物","authors":"Prerak Deep, Dheeraj Kulkarni","doi":"arxiv-2407.04395","DOIUrl":null,"url":null,"abstract":"In this note, we explore the possibility of the existence of Kirby move of\ntype 1 for contact surgery diagrams. In particular, we give the necessary\nconditions on a contact surgery diagram to become a potential candidate for\ncontact Kirby move of type 1. We prove that no other contact integral surgery\ndiagram satisfies those conditions except for contact $(+2)$-surgery on\nLegendrian unknot with Thruston--Bennequin number $-1$.","PeriodicalId":501155,"journal":{"name":"arXiv - MATH - Symplectic Geometry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On A Potential Contact Analogue Of Kirby Move Of Type 1\",\"authors\":\"Prerak Deep, Dheeraj Kulkarni\",\"doi\":\"arxiv-2407.04395\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this note, we explore the possibility of the existence of Kirby move of\\ntype 1 for contact surgery diagrams. In particular, we give the necessary\\nconditions on a contact surgery diagram to become a potential candidate for\\ncontact Kirby move of type 1. We prove that no other contact integral surgery\\ndiagram satisfies those conditions except for contact $(+2)$-surgery on\\nLegendrian unknot with Thruston--Bennequin number $-1$.\",\"PeriodicalId\":501155,\"journal\":{\"name\":\"arXiv - MATH - Symplectic Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Symplectic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.04395\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Symplectic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.04395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本注释中,我们探讨了接触手术图存在类型 1 的柯比移动的可能性。特别是,我们给出了接触手术图成为类型 1 的接触柯比移动的潜在候选者的必要条件。我们证明,除了具有 Thruston-Bennequin 数 $-1$ 的莱根德里结上的接触 $(+2)$ 手术图之外,没有其他接触积分手术图满足这些条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On A Potential Contact Analogue Of Kirby Move Of Type 1
In this note, we explore the possibility of the existence of Kirby move of type 1 for contact surgery diagrams. In particular, we give the necessary conditions on a contact surgery diagram to become a potential candidate for contact Kirby move of type 1. We prove that no other contact integral surgery diagram satisfies those conditions except for contact $(+2)$-surgery on Legendrian unknot with Thruston--Bennequin number $-1$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信