{"title":"关于科比第一类移动的潜在接触式类似物","authors":"Prerak Deep, Dheeraj Kulkarni","doi":"arxiv-2407.04395","DOIUrl":null,"url":null,"abstract":"In this note, we explore the possibility of the existence of Kirby move of\ntype 1 for contact surgery diagrams. In particular, we give the necessary\nconditions on a contact surgery diagram to become a potential candidate for\ncontact Kirby move of type 1. We prove that no other contact integral surgery\ndiagram satisfies those conditions except for contact $(+2)$-surgery on\nLegendrian unknot with Thruston--Bennequin number $-1$.","PeriodicalId":501155,"journal":{"name":"arXiv - MATH - Symplectic Geometry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On A Potential Contact Analogue Of Kirby Move Of Type 1\",\"authors\":\"Prerak Deep, Dheeraj Kulkarni\",\"doi\":\"arxiv-2407.04395\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this note, we explore the possibility of the existence of Kirby move of\\ntype 1 for contact surgery diagrams. In particular, we give the necessary\\nconditions on a contact surgery diagram to become a potential candidate for\\ncontact Kirby move of type 1. We prove that no other contact integral surgery\\ndiagram satisfies those conditions except for contact $(+2)$-surgery on\\nLegendrian unknot with Thruston--Bennequin number $-1$.\",\"PeriodicalId\":501155,\"journal\":{\"name\":\"arXiv - MATH - Symplectic Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Symplectic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.04395\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Symplectic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.04395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On A Potential Contact Analogue Of Kirby Move Of Type 1
In this note, we explore the possibility of the existence of Kirby move of
type 1 for contact surgery diagrams. In particular, we give the necessary
conditions on a contact surgery diagram to become a potential candidate for
contact Kirby move of type 1. We prove that no other contact integral surgery
diagram satisfies those conditions except for contact $(+2)$-surgery on
Legendrian unknot with Thruston--Bennequin number $-1$.