A_\infty$类中的单值和映射空间

Hiro Lee Tanaka
{"title":"A_\\infty$类中的单值和映射空间","authors":"Hiro Lee Tanaka","doi":"arxiv-2407.05532","DOIUrl":null,"url":null,"abstract":"We prove, over any base ring, that the infinity-category of strictly unital\nA-infinity-categories (and strictly unital functors) is equivalent to the\ninfinity-category of unital A-infinity-categories (and unital functors). We\nalso identify various models for internal homs and mapping spaces in the\ninfinity-categories of dg-categories and of A-infinity--categories,\ngeneralizing results of To\\\"en and Faonte.","PeriodicalId":501155,"journal":{"name":"arXiv - MATH - Symplectic Geometry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unitalities and mapping spaces in $A_\\\\infty$-categories\",\"authors\":\"Hiro Lee Tanaka\",\"doi\":\"arxiv-2407.05532\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove, over any base ring, that the infinity-category of strictly unital\\nA-infinity-categories (and strictly unital functors) is equivalent to the\\ninfinity-category of unital A-infinity-categories (and unital functors). We\\nalso identify various models for internal homs and mapping spaces in the\\ninfinity-categories of dg-categories and of A-infinity--categories,\\ngeneralizing results of To\\\\\\\"en and Faonte.\",\"PeriodicalId\":501155,\"journal\":{\"name\":\"arXiv - MATH - Symplectic Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Symplectic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.05532\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Symplectic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.05532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明,在任何基环上,严格无素 A 无穷范畴(和严格无素函子)的无穷范畴等价于无素 A 无穷范畴(和无素函子)的无穷范畴。我们还识别了dg-范畴的无穷范畴和A-无穷范畴中的内部原子和映射空间的各种模型,概括了To\"en 和 Faonte的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unitalities and mapping spaces in $A_\infty$-categories
We prove, over any base ring, that the infinity-category of strictly unital A-infinity-categories (and strictly unital functors) is equivalent to the infinity-category of unital A-infinity-categories (and unital functors). We also identify various models for internal homs and mapping spaces in the infinity-categories of dg-categories and of A-infinity--categories, generalizing results of To\"en and Faonte.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信