{"title":"A_\\infty$类中的单值和映射空间","authors":"Hiro Lee Tanaka","doi":"arxiv-2407.05532","DOIUrl":null,"url":null,"abstract":"We prove, over any base ring, that the infinity-category of strictly unital\nA-infinity-categories (and strictly unital functors) is equivalent to the\ninfinity-category of unital A-infinity-categories (and unital functors). We\nalso identify various models for internal homs and mapping spaces in the\ninfinity-categories of dg-categories and of A-infinity--categories,\ngeneralizing results of To\\\"en and Faonte.","PeriodicalId":501155,"journal":{"name":"arXiv - MATH - Symplectic Geometry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unitalities and mapping spaces in $A_\\\\infty$-categories\",\"authors\":\"Hiro Lee Tanaka\",\"doi\":\"arxiv-2407.05532\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove, over any base ring, that the infinity-category of strictly unital\\nA-infinity-categories (and strictly unital functors) is equivalent to the\\ninfinity-category of unital A-infinity-categories (and unital functors). We\\nalso identify various models for internal homs and mapping spaces in the\\ninfinity-categories of dg-categories and of A-infinity--categories,\\ngeneralizing results of To\\\\\\\"en and Faonte.\",\"PeriodicalId\":501155,\"journal\":{\"name\":\"arXiv - MATH - Symplectic Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Symplectic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.05532\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Symplectic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.05532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们证明,在任何基环上,严格无素 A 无穷范畴(和严格无素函子)的无穷范畴等价于无素 A 无穷范畴(和无素函子)的无穷范畴。我们还识别了dg-范畴的无穷范畴和A-无穷范畴中的内部原子和映射空间的各种模型,概括了To\"en 和 Faonte的结果。
Unitalities and mapping spaces in $A_\infty$-categories
We prove, over any base ring, that the infinity-category of strictly unital
A-infinity-categories (and strictly unital functors) is equivalent to the
infinity-category of unital A-infinity-categories (and unital functors). We
also identify various models for internal homs and mapping spaces in the
infinity-categories of dg-categories and of A-infinity--categories,
generalizing results of To\"en and Faonte.