具有均匀正标量曲率的完整黎曼 4-芒形

Otis Chodosh, Davi Maximo, Anubhav Mukherjee
{"title":"具有均匀正标量曲率的完整黎曼 4-芒形","authors":"Otis Chodosh, Davi Maximo, Anubhav Mukherjee","doi":"arxiv-2407.05574","DOIUrl":null,"url":null,"abstract":"We obtain topological obstructions to the existence of a complete Riemannian\nmetric with uniformly positive scalar curvature on certain (non-compact)\n$4$-manifolds. In particular, such a metric on the interior of a compact\ncontractible $4$-manifold uniquely distinguishes the standard $4$-ball up to\ndiffeomorphism among Mazur manifolds and up to homeomorphism in general. We additionally show there exist uncountably many exotic $\\mathbb{R}^4$'s\nthat do not admit such a metric and that any (non-compact) tame $4$-manifold\nhas a smooth structure that does not admit such a metric.","PeriodicalId":501155,"journal":{"name":"arXiv - MATH - Symplectic Geometry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Complete Riemannian 4-manifolds with uniformly positive scalar curvature\",\"authors\":\"Otis Chodosh, Davi Maximo, Anubhav Mukherjee\",\"doi\":\"arxiv-2407.05574\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We obtain topological obstructions to the existence of a complete Riemannian\\nmetric with uniformly positive scalar curvature on certain (non-compact)\\n$4$-manifolds. In particular, such a metric on the interior of a compact\\ncontractible $4$-manifold uniquely distinguishes the standard $4$-ball up to\\ndiffeomorphism among Mazur manifolds and up to homeomorphism in general. We additionally show there exist uncountably many exotic $\\\\mathbb{R}^4$'s\\nthat do not admit such a metric and that any (non-compact) tame $4$-manifold\\nhas a smooth structure that does not admit such a metric.\",\"PeriodicalId\":501155,\"journal\":{\"name\":\"arXiv - MATH - Symplectic Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Symplectic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.05574\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Symplectic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.05574","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们获得了在某些(非紧凑)$4$-manifold 上存在具有均匀正标量曲率的完整黎曼度量的拓扑障碍。特别是,在紧凑可收缩的$4$-manifold内部的这种度量唯一地区分了马祖尔流形中的标准$4$-球直到差分同构,以及一般的同构。此外,我们还证明了存在着不可计数的奇异$\mathbb{R}^4$'s,这些奇异的$\mathbb{R}^4$'s不接受这样的度量,而且任何(非紧凑的)驯服的$4$-manifold都有不接受这样的度量的光滑结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Complete Riemannian 4-manifolds with uniformly positive scalar curvature
We obtain topological obstructions to the existence of a complete Riemannian metric with uniformly positive scalar curvature on certain (non-compact) $4$-manifolds. In particular, such a metric on the interior of a compact contractible $4$-manifold uniquely distinguishes the standard $4$-ball up to diffeomorphism among Mazur manifolds and up to homeomorphism in general. We additionally show there exist uncountably many exotic $\mathbb{R}^4$'s that do not admit such a metric and that any (non-compact) tame $4$-manifold has a smooth structure that does not admit such a metric.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信