微型本地投影仪

Yannick Guedes Bonthonneau
{"title":"微型本地投影仪","authors":"Yannick Guedes Bonthonneau","doi":"arxiv-2407.06644","DOIUrl":null,"url":null,"abstract":"The purpose of this article is to study operators whose kernel share some key\nfeatures of Bergman kernels from complex analysis, and are approximate\nprojectors. It turns out that they must be associated with a rich set of\ngeometric data, on the one hand, and that on the other hand, all such operators\ncan be locally conjugated in some sense.","PeriodicalId":501155,"journal":{"name":"arXiv - MATH - Symplectic Geometry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microlocal Projectors\",\"authors\":\"Yannick Guedes Bonthonneau\",\"doi\":\"arxiv-2407.06644\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this article is to study operators whose kernel share some key\\nfeatures of Bergman kernels from complex analysis, and are approximate\\nprojectors. It turns out that they must be associated with a rich set of\\ngeometric data, on the one hand, and that on the other hand, all such operators\\ncan be locally conjugated in some sense.\",\"PeriodicalId\":501155,\"journal\":{\"name\":\"arXiv - MATH - Symplectic Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Symplectic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.06644\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Symplectic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.06644","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在研究其核与复分析中的伯格曼核有一些共同的关键特征,并且是近似投影的算子。事实证明,一方面,它们必须与丰富的几何数据集相关联;另一方面,所有此类算子在某种意义上都可以局部共轭。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Microlocal Projectors
The purpose of this article is to study operators whose kernel share some key features of Bergman kernels from complex analysis, and are approximate projectors. It turns out that they must be associated with a rich set of geometric data, on the one hand, and that on the other hand, all such operators can be locally conjugated in some sense.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信