我们仿射黎曼曲面

Richard Cushman
{"title":"我们仿射黎曼曲面","authors":"Richard Cushman","doi":"arxiv-2407.06332","DOIUrl":null,"url":null,"abstract":"We show that the universal covering space of a connected component of a\nregular level set of a smooth complex valued function on ${\\mathbb{C}}^2$,\nwhich is a smooth affine Riemann surface, is ${\\mathbb{R}}^2$. This implies\nthat the orbit space of the action of the covering group on ${\\mathbb{R}}^2$ is\nthe original affine Riemann surface.","PeriodicalId":501155,"journal":{"name":"arXiv - MATH - Symplectic Geometry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On affine Riemann surfaces\",\"authors\":\"Richard Cushman\",\"doi\":\"arxiv-2407.06332\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that the universal covering space of a connected component of a\\nregular level set of a smooth complex valued function on ${\\\\mathbb{C}}^2$,\\nwhich is a smooth affine Riemann surface, is ${\\\\mathbb{R}}^2$. This implies\\nthat the orbit space of the action of the covering group on ${\\\\mathbb{R}}^2$ is\\nthe original affine Riemann surface.\",\"PeriodicalId\":501155,\"journal\":{\"name\":\"arXiv - MATH - Symplectic Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Symplectic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.06332\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Symplectic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.06332","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了在光滑仿射黎曼曲面 ${mathbb{C}}^2$ 上的光滑复值函数的格平集的连通分量的通用覆盖空间是 ${mathbb{R}}^2$。这意味着覆盖组作用于 ${mathbb{R}}^2$ 的轨道空间是原始仿射黎曼曲面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On affine Riemann surfaces
We show that the universal covering space of a connected component of a regular level set of a smooth complex valued function on ${\mathbb{C}}^2$, which is a smooth affine Riemann surface, is ${\mathbb{R}}^2$. This implies that the orbit space of the action of the covering group on ${\mathbb{R}}^2$ is the original affine Riemann surface.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信