数据驱动的库存控制,涉及固定设置成本和离散删减需求

IF 1.9 4区 管理学 Q3 OPERATIONS RESEARCH & MANAGEMENT SCIENCE
Michael N. Katehakis, Ehsan Teymourian, Jian Yang
{"title":"数据驱动的库存控制,涉及固定设置成本和离散删减需求","authors":"Michael N. Katehakis, Ehsan Teymourian, Jian Yang","doi":"10.1002/nav.22211","DOIUrl":null,"url":null,"abstract":"We investigate a data‐driven dynamic inventory control problem involving fixed setup costs and lost sales. Random demand arrivals stem from a demand distribution that is only known to come out of a vast ambiguity set. Lost sales and demand ambiguity would together complicate the problem through censoring, namely, the inability of the firm to observe the lost portion of the demand data. Our main policy idea advocates periodically ordering up to high levels for learning purposes and, in intervening periods, cleverly exploiting the information gained in learning periods. By regret, we mean the price paid for ambiguity in long‐run average performances. When demand has a finite support, we can accomplish a regret bound in the order of which almost matches a known lower bound as long as inventory costs are genuinely convex. Major policy adjustments are warranted for the more complex case involving an unbounded demand support. The resulting regret could range between and depending on the nature of moment‐related bounds that help characterize the degree of ambiguity. These are improvable to when distributions are light‐tailed. Our simulation demonstrates the merits of various policy ideas.","PeriodicalId":49772,"journal":{"name":"Naval Research Logistics","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data‐driven inventory control involving fixed setup costs and discrete censored demand\",\"authors\":\"Michael N. Katehakis, Ehsan Teymourian, Jian Yang\",\"doi\":\"10.1002/nav.22211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate a data‐driven dynamic inventory control problem involving fixed setup costs and lost sales. Random demand arrivals stem from a demand distribution that is only known to come out of a vast ambiguity set. Lost sales and demand ambiguity would together complicate the problem through censoring, namely, the inability of the firm to observe the lost portion of the demand data. Our main policy idea advocates periodically ordering up to high levels for learning purposes and, in intervening periods, cleverly exploiting the information gained in learning periods. By regret, we mean the price paid for ambiguity in long‐run average performances. When demand has a finite support, we can accomplish a regret bound in the order of which almost matches a known lower bound as long as inventory costs are genuinely convex. Major policy adjustments are warranted for the more complex case involving an unbounded demand support. The resulting regret could range between and depending on the nature of moment‐related bounds that help characterize the degree of ambiguity. These are improvable to when distributions are light‐tailed. Our simulation demonstrates the merits of various policy ideas.\",\"PeriodicalId\":49772,\"journal\":{\"name\":\"Naval Research Logistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Naval Research Logistics\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.1002/nav.22211\",\"RegionNum\":4,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Naval Research Logistics","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1002/nav.22211","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了一个数据驱动的动态库存控制问题,其中涉及固定设置成本和销售损失。随机需求到达源于一个需求分布,而这个需求分布只能从一个巨大的模糊集合中产生。损失的销售额和需求的模糊性会通过普查(即公司无法观察到需求数据中损失的部分)共同使问题复杂化。我们的主要政策主张是,出于学习目的,定期向高水平订货,并在间隔期巧妙地利用在学习期获得的信息。我们所说的 "遗憾 "是指为长期平均绩效的模糊性所付出的代价。当需求支持有限时,只要库存成本是真正的凸性,我们就能达到与已知下限几乎一致的后悔约束。对于涉及无限制需求支持的更复杂情况,则需要对政策进行重大调整。由此产生的遗憾值可能介于和之间,这取决于有助于描述模糊程度的时刻相关界限的性质。当分布为光尾时,这些界限可以改进。我们的模拟演示了各种政策理念的优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data‐driven inventory control involving fixed setup costs and discrete censored demand
We investigate a data‐driven dynamic inventory control problem involving fixed setup costs and lost sales. Random demand arrivals stem from a demand distribution that is only known to come out of a vast ambiguity set. Lost sales and demand ambiguity would together complicate the problem through censoring, namely, the inability of the firm to observe the lost portion of the demand data. Our main policy idea advocates periodically ordering up to high levels for learning purposes and, in intervening periods, cleverly exploiting the information gained in learning periods. By regret, we mean the price paid for ambiguity in long‐run average performances. When demand has a finite support, we can accomplish a regret bound in the order of which almost matches a known lower bound as long as inventory costs are genuinely convex. Major policy adjustments are warranted for the more complex case involving an unbounded demand support. The resulting regret could range between and depending on the nature of moment‐related bounds that help characterize the degree of ambiguity. These are improvable to when distributions are light‐tailed. Our simulation demonstrates the merits of various policy ideas.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Naval Research Logistics
Naval Research Logistics 管理科学-运筹学与管理科学
CiteScore
4.20
自引率
4.30%
发文量
47
审稿时长
8 months
期刊介绍: Submissions that are most appropriate for NRL are papers addressing modeling and analysis of problems motivated by real-world applications; major methodological advances in operations research and applied statistics; and expository or survey pieces of lasting value. Areas represented include (but are not limited to) probability, statistics, simulation, optimization, game theory, quality, scheduling, reliability, maintenance, supply chain, decision analysis, and combat models. Special issues devoted to a single topic are published occasionally, and proposals for special issues are welcomed by the Editorial Board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信