不对称达芬振荡器:1:2$共振的变形及其与主共振的相互作用

Jan Kyziol, Andrzej Okniński
{"title":"不对称达芬振荡器:1:2$共振的变形及其与主共振的相互作用","authors":"Jan Kyziol, Andrzej Okniński","doi":"arxiv-2407.03423","DOIUrl":null,"url":null,"abstract":"We investigate the $1: 2$ resonance in the periodically forced asymmetric\nDuffing oscillator due to the period-doubling of the primary $1: 1$ resonance\nor forming independently, coexisting with the primary resonance. We compute the\nsteady-state asymptotic solution - the amplitude-frequency implicit function.\nWorking in the differential properties of implicit functions framework, we\ndescribe complicated metamorphoses of the $1:2$ resonance and its interaction\nwith the primary resonance.","PeriodicalId":501167,"journal":{"name":"arXiv - PHYS - Chaotic Dynamics","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymmetric Duffing oscillator: metamorphoses of $1:2$ resonance and its interaction with the primary resonance\",\"authors\":\"Jan Kyziol, Andrzej Okniński\",\"doi\":\"arxiv-2407.03423\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the $1: 2$ resonance in the periodically forced asymmetric\\nDuffing oscillator due to the period-doubling of the primary $1: 1$ resonance\\nor forming independently, coexisting with the primary resonance. We compute the\\nsteady-state asymptotic solution - the amplitude-frequency implicit function.\\nWorking in the differential properties of implicit functions framework, we\\ndescribe complicated metamorphoses of the $1:2$ resonance and its interaction\\nwith the primary resonance.\",\"PeriodicalId\":501167,\"journal\":{\"name\":\"arXiv - PHYS - Chaotic Dynamics\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Chaotic Dynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.03423\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Chaotic Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.03423","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了周期性受迫非对称杜芬振荡器中的 1: 2 美元共振,它是由于主 1: 1 美元共振的周期加倍或与主共振共存而独立形成的。我们计算了稳态渐近解--幅频隐函数。在隐函数微分性质框架下,我们描述了 1:2$ 共振的复杂变形及其与主共振的相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymmetric Duffing oscillator: metamorphoses of $1:2$ resonance and its interaction with the primary resonance
We investigate the $1: 2$ resonance in the periodically forced asymmetric Duffing oscillator due to the period-doubling of the primary $1: 1$ resonance or forming independently, coexisting with the primary resonance. We compute the steady-state asymptotic solution - the amplitude-frequency implicit function. Working in the differential properties of implicit functions framework, we describe complicated metamorphoses of the $1:2$ resonance and its interaction with the primary resonance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信