{"title":"慢性阻塞性肺病中免疫细胞的因果关系:孟德尔随机化研究","authors":"Tiefa Guan, Yibing Qin, Nini Qu, Yushuo Pan","doi":"10.2147/copd.s460342","DOIUrl":null,"url":null,"abstract":"<strong>Background:</strong> The immune cells play a substantial role in the development and progression of chronic obstructive pulmonary disease (COPD). We aim to investigate the causal involvement of immune cells in COPD via a Mendelian randomization (MR) analysis.<br/><strong>Methods:</strong> Published genome-wide association studies (GWAS) statistics on immune cells were analyzed, with genetic variants identified as instrumental variables (IVs). Inverse-variance weighting (IVW), weighted median, and MR-Egger regression methods were employed, along with simple mode and weighted mode adopted in the two-sample MR analysis. Sensitivity analysis was conducted to examine the heterogeneity, horizontal pleiotropy, and stability of the causal relationship.<br/><strong>Results:</strong> IVW results suggested that CCR2 on CD62L+ plasmacytoid dendritic cells (DC), CCR2 on plasmacytoid DC, CD11b on CD66b++ myeloid cells, CD19 on CD20− CD38− CD24+ memory B cell subset, CD25 on transitional B cells, and CD25++CD8br %CD8br T cells were risk factors for the development of COPD. Besides, CD127 on effector memory-like cytotoxic T lymphocytes lacking expression of co-stimulatory molecule 28 (CD28-EM CTLs) and HLA DR+ NK ACs expressing human leukocyte antigen DR molecules while being natural killer cells (%NK ACs) were protective factors for COPD.<br/><strong>Conclusion:</strong> This study unveiled a causal relationship between immune cell phenotype and COPD. These findings offer new insights for the prevention and treatment of COPD using COPD-associated immune cells.<br/><br/>","PeriodicalId":13792,"journal":{"name":"International Journal of Chronic Obstructive Pulmonary Disease","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Causal Involvement of Immune Cells in Chronic Obstructive Pulmonary Disease: A Mendelian Randomization Study\",\"authors\":\"Tiefa Guan, Yibing Qin, Nini Qu, Yushuo Pan\",\"doi\":\"10.2147/copd.s460342\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<strong>Background:</strong> The immune cells play a substantial role in the development and progression of chronic obstructive pulmonary disease (COPD). We aim to investigate the causal involvement of immune cells in COPD via a Mendelian randomization (MR) analysis.<br/><strong>Methods:</strong> Published genome-wide association studies (GWAS) statistics on immune cells were analyzed, with genetic variants identified as instrumental variables (IVs). Inverse-variance weighting (IVW), weighted median, and MR-Egger regression methods were employed, along with simple mode and weighted mode adopted in the two-sample MR analysis. Sensitivity analysis was conducted to examine the heterogeneity, horizontal pleiotropy, and stability of the causal relationship.<br/><strong>Results:</strong> IVW results suggested that CCR2 on CD62L+ plasmacytoid dendritic cells (DC), CCR2 on plasmacytoid DC, CD11b on CD66b++ myeloid cells, CD19 on CD20− CD38− CD24+ memory B cell subset, CD25 on transitional B cells, and CD25++CD8br %CD8br T cells were risk factors for the development of COPD. Besides, CD127 on effector memory-like cytotoxic T lymphocytes lacking expression of co-stimulatory molecule 28 (CD28-EM CTLs) and HLA DR+ NK ACs expressing human leukocyte antigen DR molecules while being natural killer cells (%NK ACs) were protective factors for COPD.<br/><strong>Conclusion:</strong> This study unveiled a causal relationship between immune cell phenotype and COPD. These findings offer new insights for the prevention and treatment of COPD using COPD-associated immune cells.<br/><br/>\",\"PeriodicalId\":13792,\"journal\":{\"name\":\"International Journal of Chronic Obstructive Pulmonary Disease\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Chronic Obstructive Pulmonary Disease\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2147/copd.s460342\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Chronic Obstructive Pulmonary Disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/copd.s460342","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
Causal Involvement of Immune Cells in Chronic Obstructive Pulmonary Disease: A Mendelian Randomization Study
Background: The immune cells play a substantial role in the development and progression of chronic obstructive pulmonary disease (COPD). We aim to investigate the causal involvement of immune cells in COPD via a Mendelian randomization (MR) analysis. Methods: Published genome-wide association studies (GWAS) statistics on immune cells were analyzed, with genetic variants identified as instrumental variables (IVs). Inverse-variance weighting (IVW), weighted median, and MR-Egger regression methods were employed, along with simple mode and weighted mode adopted in the two-sample MR analysis. Sensitivity analysis was conducted to examine the heterogeneity, horizontal pleiotropy, and stability of the causal relationship. Results: IVW results suggested that CCR2 on CD62L+ plasmacytoid dendritic cells (DC), CCR2 on plasmacytoid DC, CD11b on CD66b++ myeloid cells, CD19 on CD20− CD38− CD24+ memory B cell subset, CD25 on transitional B cells, and CD25++CD8br %CD8br T cells were risk factors for the development of COPD. Besides, CD127 on effector memory-like cytotoxic T lymphocytes lacking expression of co-stimulatory molecule 28 (CD28-EM CTLs) and HLA DR+ NK ACs expressing human leukocyte antigen DR molecules while being natural killer cells (%NK ACs) were protective factors for COPD. Conclusion: This study unveiled a causal relationship between immune cell phenotype and COPD. These findings offer new insights for the prevention and treatment of COPD using COPD-associated immune cells.
期刊介绍:
An international, peer-reviewed journal of therapeutics and pharmacology focusing on concise rapid reporting of clinical studies and reviews in COPD. Special focus will be given to the pathophysiological processes underlying the disease, intervention programs, patient focused education, and self management protocols. This journal is directed at specialists and healthcare professionals