非零背景下修正的科特韦格-德弗里斯方程孤子气体

Xiaoen Zhang, Liming Ling
{"title":"非零背景下修正的科特韦格-德弗里斯方程孤子气体","authors":"Xiaoen Zhang, Liming Ling","doi":"arxiv-2407.05384","DOIUrl":null,"url":null,"abstract":"In this paper, we consider a soliton gas of the focusing modified Korteweg-de\nVries generated from the $N$-soliton solutions under the nonzero background.\nThe spectral soliton density is chosen on the pure imaginary axis, excluding\nthe branch cut $\\Sigma_{c}=\\left[-i, i\\right]$. In the limit $N\\to\\infty$, we\nestablish the Riemann-Hilbert problem of the soliton gas. Using the Deift-Zhou\nnonlinear steepest-descent method, this soliton gas under the nonzero\nbackground will decay to a constant background as $x\\to+\\infty$, while its\nasymptotics as $x\\to-\\infty$ can be expressed with a Riemann-Theta function,\nattached to a Riemann surface with genus-two. We also analyze the large $t$\nasymptotics over the entire spatial domain, which is divided into three\ndistinct asymptotic regions depending on the ratio $\\xi=\\frac{x}{t}$. Using the\nsimilar method, we provide the leading-order asymptotic behaviors for these\nthree regions and exhibit the dynamics of large $t$ asymptotics.","PeriodicalId":501592,"journal":{"name":"arXiv - PHYS - Exactly Solvable and Integrable Systems","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A modified Korteweg-de Vries equation soliton gas under the nonzero background\",\"authors\":\"Xiaoen Zhang, Liming Ling\",\"doi\":\"arxiv-2407.05384\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider a soliton gas of the focusing modified Korteweg-de\\nVries generated from the $N$-soliton solutions under the nonzero background.\\nThe spectral soliton density is chosen on the pure imaginary axis, excluding\\nthe branch cut $\\\\Sigma_{c}=\\\\left[-i, i\\\\right]$. In the limit $N\\\\to\\\\infty$, we\\nestablish the Riemann-Hilbert problem of the soliton gas. Using the Deift-Zhou\\nnonlinear steepest-descent method, this soliton gas under the nonzero\\nbackground will decay to a constant background as $x\\\\to+\\\\infty$, while its\\nasymptotics as $x\\\\to-\\\\infty$ can be expressed with a Riemann-Theta function,\\nattached to a Riemann surface with genus-two. We also analyze the large $t$\\nasymptotics over the entire spatial domain, which is divided into three\\ndistinct asymptotic regions depending on the ratio $\\\\xi=\\\\frac{x}{t}$. Using the\\nsimilar method, we provide the leading-order asymptotic behaviors for these\\nthree regions and exhibit the dynamics of large $t$ asymptotics.\",\"PeriodicalId\":501592,\"journal\":{\"name\":\"arXiv - PHYS - Exactly Solvable and Integrable Systems\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Exactly Solvable and Integrable Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.05384\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Exactly Solvable and Integrable Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.05384","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑了非零背景下由 $N$ 孤子解产生的聚焦修正 Korteweg-deVries 孤子气。谱孤子密度选择在纯虚轴上,不包括分支切$\Sigma_{c}=\left[-i, i\right]$ 。在极限 $N\to\infty$ 时,我们建立了孤子气体的黎曼-希尔伯特问题。利用 Deift-Zhounonlinear steepest-descent 方法,该孤子气体在非zer背景下将随着 $x\to+\infty$ 衰减到恒定背景,而其随着 $x\to-\infty$ 的渐近线可以用黎曼-泰塔函数来表示,该函数附着在属二的黎曼曲面上。我们还分析了整个空间域上的大 $t$ 渐近线,根据比率 $\xi=\frac{x}{t}$ 的不同,空间域被划分为三个不同的渐近区域。利用类似的方法,我们提供了这三个区域的前沿渐近行为,并展示了大 t 值渐近的动态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A modified Korteweg-de Vries equation soliton gas under the nonzero background
In this paper, we consider a soliton gas of the focusing modified Korteweg-de Vries generated from the $N$-soliton solutions under the nonzero background. The spectral soliton density is chosen on the pure imaginary axis, excluding the branch cut $\Sigma_{c}=\left[-i, i\right]$. In the limit $N\to\infty$, we establish the Riemann-Hilbert problem of the soliton gas. Using the Deift-Zhou nonlinear steepest-descent method, this soliton gas under the nonzero background will decay to a constant background as $x\to+\infty$, while its asymptotics as $x\to-\infty$ can be expressed with a Riemann-Theta function, attached to a Riemann surface with genus-two. We also analyze the large $t$ asymptotics over the entire spatial domain, which is divided into three distinct asymptotic regions depending on the ratio $\xi=\frac{x}{t}$. Using the similar method, we provide the leading-order asymptotic behaviors for these three regions and exhibit the dynamics of large $t$ asymptotics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信