半线上非线性薛定谔方程的作用角变量

Baoqiang Xia
{"title":"半线上非线性薛定谔方程的作用角变量","authors":"Baoqiang Xia","doi":"arxiv-2407.06916","DOIUrl":null,"url":null,"abstract":"We consider the nonlinear Schr\\\"{o}dinger (NLS) equation on the half-line\nsubjecting to a class of boundary conditions preserve the integrability of the\nmodel. For such a half-line problem, the Poisson brackets of the corresponding\nscattering data are computed, and the variables of action-angle type are\nconstructed. These action-angle variables completely trivialize the dynamics of\nthe NLS equation on the half-line.","PeriodicalId":501592,"journal":{"name":"arXiv - PHYS - Exactly Solvable and Integrable Systems","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Action-angle variables for the nonlinear Schrödinger equation on the half-line\",\"authors\":\"Baoqiang Xia\",\"doi\":\"arxiv-2407.06916\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the nonlinear Schr\\\\\\\"{o}dinger (NLS) equation on the half-line\\nsubjecting to a class of boundary conditions preserve the integrability of the\\nmodel. For such a half-line problem, the Poisson brackets of the corresponding\\nscattering data are computed, and the variables of action-angle type are\\nconstructed. These action-angle variables completely trivialize the dynamics of\\nthe NLS equation on the half-line.\",\"PeriodicalId\":501592,\"journal\":{\"name\":\"arXiv - PHYS - Exactly Solvable and Integrable Systems\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Exactly Solvable and Integrable Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.06916\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Exactly Solvable and Integrable Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.06916","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑的是半线上的非线性薛定谔(NLS)方程,该方程需要在一类边界条件下保持模型的可整性。对于这样一个半线问题,我们计算了相应散射数据的泊松括号,并构造了作用角类型的变量。这些作用角变量完全琐化了半线上 NLS 方程的动力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Action-angle variables for the nonlinear Schrödinger equation on the half-line
We consider the nonlinear Schr\"{o}dinger (NLS) equation on the half-line subjecting to a class of boundary conditions preserve the integrability of the model. For such a half-line problem, the Poisson brackets of the corresponding scattering data are computed, and the variables of action-angle type are constructed. These action-angle variables completely trivialize the dynamics of the NLS equation on the half-line.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信