{"title":"半线上非线性薛定谔方程的作用角变量","authors":"Baoqiang Xia","doi":"arxiv-2407.06916","DOIUrl":null,"url":null,"abstract":"We consider the nonlinear Schr\\\"{o}dinger (NLS) equation on the half-line\nsubjecting to a class of boundary conditions preserve the integrability of the\nmodel. For such a half-line problem, the Poisson brackets of the corresponding\nscattering data are computed, and the variables of action-angle type are\nconstructed. These action-angle variables completely trivialize the dynamics of\nthe NLS equation on the half-line.","PeriodicalId":501592,"journal":{"name":"arXiv - PHYS - Exactly Solvable and Integrable Systems","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Action-angle variables for the nonlinear Schrödinger equation on the half-line\",\"authors\":\"Baoqiang Xia\",\"doi\":\"arxiv-2407.06916\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the nonlinear Schr\\\\\\\"{o}dinger (NLS) equation on the half-line\\nsubjecting to a class of boundary conditions preserve the integrability of the\\nmodel. For such a half-line problem, the Poisson brackets of the corresponding\\nscattering data are computed, and the variables of action-angle type are\\nconstructed. These action-angle variables completely trivialize the dynamics of\\nthe NLS equation on the half-line.\",\"PeriodicalId\":501592,\"journal\":{\"name\":\"arXiv - PHYS - Exactly Solvable and Integrable Systems\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Exactly Solvable and Integrable Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.06916\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Exactly Solvable and Integrable Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.06916","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Action-angle variables for the nonlinear Schrödinger equation on the half-line
We consider the nonlinear Schr\"{o}dinger (NLS) equation on the half-line
subjecting to a class of boundary conditions preserve the integrability of the
model. For such a half-line problem, the Poisson brackets of the corresponding
scattering data are computed, and the variables of action-angle type are
constructed. These action-angle variables completely trivialize the dynamics of
the NLS equation on the half-line.