切线范畴中微分束的表征

Michael Ching
{"title":"切线范畴中微分束的表征","authors":"Michael Ching","doi":"arxiv-2407.06515","DOIUrl":null,"url":null,"abstract":"A tangent category is a categorical abstraction of the tangent bundle\nconstruction for smooth manifolds. In that context, Cockett and Cruttwell\ndevelop the notion of differential bundle which, by work of MacAdam,\ngeneralizes the notion of smooth vector bundle to the abstract setting. Here we\nprovide a new characterization of those differential bundles and show that, up\nto isomorphism, a differential bundle is determined by its projection map and\nzero section. We show how these results can be used to quickly identify\ndifferential bundles in various tangent categories.","PeriodicalId":501135,"journal":{"name":"arXiv - MATH - Category Theory","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A characterization of differential bundles in tangent categories\",\"authors\":\"Michael Ching\",\"doi\":\"arxiv-2407.06515\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A tangent category is a categorical abstraction of the tangent bundle\\nconstruction for smooth manifolds. In that context, Cockett and Cruttwell\\ndevelop the notion of differential bundle which, by work of MacAdam,\\ngeneralizes the notion of smooth vector bundle to the abstract setting. Here we\\nprovide a new characterization of those differential bundles and show that, up\\nto isomorphism, a differential bundle is determined by its projection map and\\nzero section. We show how these results can be used to quickly identify\\ndifferential bundles in various tangent categories.\",\"PeriodicalId\":501135,\"journal\":{\"name\":\"arXiv - MATH - Category Theory\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Category Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.06515\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Category Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.06515","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

切线范畴是光滑流形切线束构造的分类抽象。在此背景下,科克特和克鲁特韦尔提出了微分束的概念,通过麦克亚当的工作,微分束将光滑矢量束的概念推广到抽象环境中。在这里,我们为这些微分束提供了一个新的特征,并证明在同构之前,微分束是由其投影图和零段决定的。我们展示了如何利用这些结果快速识别各种切范畴中的微分束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A characterization of differential bundles in tangent categories
A tangent category is a categorical abstraction of the tangent bundle construction for smooth manifolds. In that context, Cockett and Cruttwell develop the notion of differential bundle which, by work of MacAdam, generalizes the notion of smooth vector bundle to the abstract setting. Here we provide a new characterization of those differential bundles and show that, up to isomorphism, a differential bundle is determined by its projection map and zero section. We show how these results can be used to quickly identify differential bundles in various tangent categories.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信