{"title":"简约集、双色图和模糊集上的 Lawvere-Tierney 拓扑特征","authors":"Aloïs Rosset, Helle Hvid Hansen, Jörg Endrullis","doi":"arxiv-2407.04535","DOIUrl":null,"url":null,"abstract":"Simplicial sets generalize many categories of graphs. In this paper, we give\na complete characterization of the Lawvere-Tierney topologies on\n(semi-)simplicial sets, on bicolored graphs, and on fuzzy sets. We apply our\nresults to establish that 'partially simple' simplicial sets and 'partially\nsimple' graphs form quasitoposes.","PeriodicalId":501135,"journal":{"name":"arXiv - MATH - Category Theory","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterisation of Lawvere-Tierney Topologies on Simplicial Sets, Bicolored Graphs, and Fuzzy Sets\",\"authors\":\"Aloïs Rosset, Helle Hvid Hansen, Jörg Endrullis\",\"doi\":\"arxiv-2407.04535\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Simplicial sets generalize many categories of graphs. In this paper, we give\\na complete characterization of the Lawvere-Tierney topologies on\\n(semi-)simplicial sets, on bicolored graphs, and on fuzzy sets. We apply our\\nresults to establish that 'partially simple' simplicial sets and 'partially\\nsimple' graphs form quasitoposes.\",\"PeriodicalId\":501135,\"journal\":{\"name\":\"arXiv - MATH - Category Theory\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Category Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.04535\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Category Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.04535","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Characterisation of Lawvere-Tierney Topologies on Simplicial Sets, Bicolored Graphs, and Fuzzy Sets
Simplicial sets generalize many categories of graphs. In this paper, we give
a complete characterization of the Lawvere-Tierney topologies on
(semi-)simplicial sets, on bicolored graphs, and on fuzzy sets. We apply our
results to establish that 'partially simple' simplicial sets and 'partially
simple' graphs form quasitoposes.