{"title":"IAFPN:用于物体检测的层间增强和多层融合网络","authors":"Zhicheng Li, Chao Yang, Longyu Jiang","doi":"10.1007/s00138-024-01577-5","DOIUrl":null,"url":null,"abstract":"<p>Feature pyramid network (FPN) improves object detection performance by means of top-down multilevel feature fusion. However, the current FPN-based methods have not effectively utilized the interlayer features to suppress the aliasing effects in the feature downward fusion process. We propose an interlayer attention feature pyramid network that attempts to integrate attention gates into FPN through interlayer enhancement to establish the correlation between context and model, thereby highlighting the salient region of each layer and suppressing the aliasing effects. Moreover, in order to avoid feature dilution in the feature downward fusion process and inability of multilayer features to utilize each other, simplified non-local algorithm is used in the multilayer fusion module to fuse and enhance the multiscale features. A comprehensive analysis of MS COCO and PASCAL VOC benchmarks demonstrate that our network achieves precise object localization and also outperforms current FPN-based object detection algorithms.</p>","PeriodicalId":51116,"journal":{"name":"Machine Vision and Applications","volume":"28 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"IAFPN: interlayer enhancement and multilayer fusion network for object detection\",\"authors\":\"Zhicheng Li, Chao Yang, Longyu Jiang\",\"doi\":\"10.1007/s00138-024-01577-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Feature pyramid network (FPN) improves object detection performance by means of top-down multilevel feature fusion. However, the current FPN-based methods have not effectively utilized the interlayer features to suppress the aliasing effects in the feature downward fusion process. We propose an interlayer attention feature pyramid network that attempts to integrate attention gates into FPN through interlayer enhancement to establish the correlation between context and model, thereby highlighting the salient region of each layer and suppressing the aliasing effects. Moreover, in order to avoid feature dilution in the feature downward fusion process and inability of multilayer features to utilize each other, simplified non-local algorithm is used in the multilayer fusion module to fuse and enhance the multiscale features. A comprehensive analysis of MS COCO and PASCAL VOC benchmarks demonstrate that our network achieves precise object localization and also outperforms current FPN-based object detection algorithms.</p>\",\"PeriodicalId\":51116,\"journal\":{\"name\":\"Machine Vision and Applications\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine Vision and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s00138-024-01577-5\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Vision and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00138-024-01577-5","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
IAFPN: interlayer enhancement and multilayer fusion network for object detection
Feature pyramid network (FPN) improves object detection performance by means of top-down multilevel feature fusion. However, the current FPN-based methods have not effectively utilized the interlayer features to suppress the aliasing effects in the feature downward fusion process. We propose an interlayer attention feature pyramid network that attempts to integrate attention gates into FPN through interlayer enhancement to establish the correlation between context and model, thereby highlighting the salient region of each layer and suppressing the aliasing effects. Moreover, in order to avoid feature dilution in the feature downward fusion process and inability of multilayer features to utilize each other, simplified non-local algorithm is used in the multilayer fusion module to fuse and enhance the multiscale features. A comprehensive analysis of MS COCO and PASCAL VOC benchmarks demonstrate that our network achieves precise object localization and also outperforms current FPN-based object detection algorithms.
期刊介绍:
Machine Vision and Applications publishes high-quality technical contributions in machine vision research and development. Specifically, the editors encourage submittals in all applications and engineering aspects of image-related computing. In particular, original contributions dealing with scientific, commercial, industrial, military, and biomedical applications of machine vision, are all within the scope of the journal.
Particular emphasis is placed on engineering and technology aspects of image processing and computer vision.
The following aspects of machine vision applications are of interest: algorithms, architectures, VLSI implementations, AI techniques and expert systems for machine vision, front-end sensing, multidimensional and multisensor machine vision, real-time techniques, image databases, virtual reality and visualization. Papers must include a significant experimental validation component.