关于派生方案上的 pro-cdh 血统

Shane Kelly, Shuji Saito, Georg Tamme
{"title":"关于派生方案上的 pro-cdh 血统","authors":"Shane Kelly, Shuji Saito, Georg Tamme","doi":"arxiv-2407.04378","DOIUrl":null,"url":null,"abstract":"We prove a `pro-cdh descent' result for suitably connective localizing\ninvariants and the cotangent complex on arbitrary qcqs derived schemes. As an\napplication, we deduce a generalised Weibel vanishing for negative $K$-groups\nof non-Noetherian schemes.","PeriodicalId":501143,"journal":{"name":"arXiv - MATH - K-Theory and Homology","volume":"147 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On pro-cdh descent on derived schemes\",\"authors\":\"Shane Kelly, Shuji Saito, Georg Tamme\",\"doi\":\"arxiv-2407.04378\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove a `pro-cdh descent' result for suitably connective localizing\\ninvariants and the cotangent complex on arbitrary qcqs derived schemes. As an\\napplication, we deduce a generalised Weibel vanishing for negative $K$-groups\\nof non-Noetherian schemes.\",\"PeriodicalId\":501143,\"journal\":{\"name\":\"arXiv - MATH - K-Theory and Homology\",\"volume\":\"147 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - K-Theory and Homology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.04378\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.04378","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了任意 qcqs 派生方案上适当连接的定位变量和余切复数的 "pro-cdh descent "结果。作为应用,我们推导了非诺特方案的负 $K$ 群的广义韦伯消失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On pro-cdh descent on derived schemes
We prove a `pro-cdh descent' result for suitably connective localizing invariants and the cotangent complex on arbitrary qcqs derived schemes. As an application, we deduce a generalised Weibel vanishing for negative $K$-groups of non-Noetherian schemes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信