为继续解决病菌问题

Pub Date : 2024-07-05 DOI:10.1134/s0001434624030350
N. A. Shananin
{"title":"为继续解决病菌问题","authors":"N. A. Shananin","doi":"10.1134/s0001434624030350","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p> In the note, by a model example of a linear partial differential equation, it is demonstrated how the properties of continuation of germs of generalized solutions are changed depending on the type of differential system generated by the principal real-analytic symbol of the equation and on whether the infinitely differentiable coefficient at the lowest term of the equation belongs to the class of real-analytic functions. </p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"To the Continuation of Solution Germs\",\"authors\":\"N. A. Shananin\",\"doi\":\"10.1134/s0001434624030350\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p> In the note, by a model example of a linear partial differential equation, it is demonstrated how the properties of continuation of germs of generalized solutions are changed depending on the type of differential system generated by the principal real-analytic symbol of the equation and on whether the infinitely differentiable coefficient at the lowest term of the equation belongs to the class of real-analytic functions. </p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1134/s0001434624030350\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0001434624030350","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要 本说明通过一个线性偏微分方程的范例,证明了广义解的延续性质是如何根据方程的主实变解析符号所产生的微分系统类型以及方程最低项的无限可变系数是否属于实变解析函数类而发生变化的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
To the Continuation of Solution Germs

Abstract

In the note, by a model example of a linear partial differential equation, it is demonstrated how the properties of continuation of germs of generalized solutions are changed depending on the type of differential system generated by the principal real-analytic symbol of the equation and on whether the infinitely differentiable coefficient at the lowest term of the equation belongs to the class of real-analytic functions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信