{"title":"用第一近似法研究微分系统的完全振荡、旋转和徘徊特性","authors":"I. N. Sergeev","doi":"10.1134/s0001434624030313","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p> The concepts of complete oscillation, rotation, and wandering as well as complete nonoscillation, nonrotation, and nonwandering of a system of differential equations (with respect to its zero solution) are introduced. A one-to-one relationship between these properties and the corresponding characteristics of the system is established. Signs of a guaranteed possibility of studying them using the first approximation system, as well as examples for which that is not possible, are given. </p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of the Complete Oscillation, Rotation, and Wandering Properties of a Differential System by the First Approximation\",\"authors\":\"I. N. Sergeev\",\"doi\":\"10.1134/s0001434624030313\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p> The concepts of complete oscillation, rotation, and wandering as well as complete nonoscillation, nonrotation, and nonwandering of a system of differential equations (with respect to its zero solution) are introduced. A one-to-one relationship between these properties and the corresponding characteristics of the system is established. Signs of a guaranteed possibility of studying them using the first approximation system, as well as examples for which that is not possible, are given. </p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1134/s0001434624030313\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0001434624030313","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Study of the Complete Oscillation, Rotation, and Wandering Properties of a Differential System by the First Approximation
Abstract
The concepts of complete oscillation, rotation, and wandering as well as complete nonoscillation, nonrotation, and nonwandering of a system of differential equations (with respect to its zero solution) are introduced. A one-to-one relationship between these properties and the corresponding characteristics of the system is established. Signs of a guaranteed possibility of studying them using the first approximation system, as well as examples for which that is not possible, are given.