$$\mathrm{\zeta}(m)$$ 的积分表示法

Pub Date : 2024-07-05 DOI:10.1134/s0001434624030283
Chunli Li, Wenchang Chu
{"title":"$$\\mathrm{\\zeta}(m)$$ 的积分表示法","authors":"Chunli Li, Wenchang Chu","doi":"10.1134/s0001434624030283","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p> An open problem about integral representation of <span>\\(\\zeta(2n)\\)</span>, proposed recently by Pain (2023), is resolved by integration by parts. More general integrals are examined by manipulating the beta integral and digamma function. </p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integral Representations of $$\\\\mathrm{\\\\zeta}(m)$$\",\"authors\":\"Chunli Li, Wenchang Chu\",\"doi\":\"10.1134/s0001434624030283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p> An open problem about integral representation of <span>\\\\(\\\\zeta(2n)\\\\)</span>, proposed recently by Pain (2023), is resolved by integration by parts. More general integrals are examined by manipulating the beta integral and digamma function. </p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1134/s0001434624030283\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0001434624030283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要 Pain (2023)最近提出的一个关于 \(\zeta(2n)\) 的积分表示的未决问题,通过分部积分得到了解决。通过操作β积分和digamma函数,研究了更一般的积分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Integral Representations of $$\mathrm{\zeta}(m)$$

Abstract

An open problem about integral representation of \(\zeta(2n)\), proposed recently by Pain (2023), is resolved by integration by parts. More general integrals are examined by manipulating the beta integral and digamma function.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信