S.S. R. 纳西洛夫的区间简单部分分数逼近问题

IF 0.6 4区 数学 Q3 MATHEMATICS
P. A. Borodin, A. M. Ershov
{"title":"S.S. R. 纳西洛夫的区间简单部分分数逼近问题","authors":"P. A. Borodin, A. M. Ershov","doi":"10.1134/s0001434624030234","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p> In 2014, S. R. Nasyrov asked whether it is true that simple partial fractions (logarithmic derivatives of complex polynomials) with poles on the unit circle are dense in the complex space <span>\\(L_2[-1,1]\\)</span>. In 2019, M. A. Komarov answered this question in the negative. The present paper contains a simple solution of Nasyrov’s problem different from Komarov’s one. Results related to the following generalizing questions are obtained: (a) of the density of simple partial fractions with poles on the unit circle in weighted Lebesgue spaces on <span>\\([-1,1]\\)</span>; (b) of the density in <span>\\(L_2[-1,1]\\)</span> of simple partial fractions with poles on the boundary of a given domain for which <span>\\([-1,1]\\)</span> is an inner chord. </p>","PeriodicalId":18294,"journal":{"name":"Mathematical Notes","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"S. R. Nasyrov’s Problem of Approximation by Simple Partial Fractions on an Interval\",\"authors\":\"P. A. Borodin, A. M. Ershov\",\"doi\":\"10.1134/s0001434624030234\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p> In 2014, S. R. Nasyrov asked whether it is true that simple partial fractions (logarithmic derivatives of complex polynomials) with poles on the unit circle are dense in the complex space <span>\\\\(L_2[-1,1]\\\\)</span>. In 2019, M. A. Komarov answered this question in the negative. The present paper contains a simple solution of Nasyrov’s problem different from Komarov’s one. Results related to the following generalizing questions are obtained: (a) of the density of simple partial fractions with poles on the unit circle in weighted Lebesgue spaces on <span>\\\\([-1,1]\\\\)</span>; (b) of the density in <span>\\\\(L_2[-1,1]\\\\)</span> of simple partial fractions with poles on the boundary of a given domain for which <span>\\\\([-1,1]\\\\)</span> is an inner chord. </p>\",\"PeriodicalId\":18294,\"journal\":{\"name\":\"Mathematical Notes\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Notes\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1134/s0001434624030234\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Notes","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0001434624030234","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 2014年,S. R. Nasyrov提出了这样一个问题:在复数空间\(L_2[-1,1]\)中,极点在单位圆上的简单部分分数(复数多项式的对数导数)是否密集?2019 年,科马洛夫(M. A. Komarov)对这个问题做出了否定的回答。本文包含了对纳西洛夫问题的不同于科马洛夫问题的简单解答。本文得到了与以下问题相关的结果:(a) \([-1,1]\)上加权 Lebesgue 空间中单位圆上有极点的简单分式的密度;(b) \(L_2[-1,1]\)中给定域边界上有极点的简单分式的密度,而 \([-1,1]\)是该域的内弦。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
S. R. Nasyrov’s Problem of Approximation by Simple Partial Fractions on an Interval

Abstract

In 2014, S. R. Nasyrov asked whether it is true that simple partial fractions (logarithmic derivatives of complex polynomials) with poles on the unit circle are dense in the complex space \(L_2[-1,1]\). In 2019, M. A. Komarov answered this question in the negative. The present paper contains a simple solution of Nasyrov’s problem different from Komarov’s one. Results related to the following generalizing questions are obtained: (a) of the density of simple partial fractions with poles on the unit circle in weighted Lebesgue spaces on \([-1,1]\); (b) of the density in \(L_2[-1,1]\) of simple partial fractions with poles on the boundary of a given domain for which \([-1,1]\) is an inner chord.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical Notes
Mathematical Notes 数学-数学
CiteScore
0.90
自引率
16.70%
发文量
179
审稿时长
24 months
期刊介绍: Mathematical Notes is a journal that publishes research papers and review articles in modern algebra, geometry and number theory, functional analysis, logic, set and measure theory, topology, probability and stochastics, differential and noncommutative geometry, operator and group theory, asymptotic and approximation methods, mathematical finance, linear and nonlinear equations, ergodic and spectral theory, operator algebras, and other related theoretical fields. It also presents rigorous results in mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信