在中等偏差区域达到固定水平的随机漫步最大时刻的极限定理

IF 0.6 4区 数学 Q3 MATHEMATICS
M. A. Anokhina
{"title":"在中等偏差区域达到固定水平的随机漫步最大时刻的极限定理","authors":"M. A. Anokhina","doi":"10.1134/s0001434624030192","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p> We consider a random walk with zero mean and finite variance whose steps are arithmetic. The arcsine law for the time the walk reaches its maximum is well known. In this paper, we consider the distribution of the moment of reaching the maximum under the assumption that the maximum value itself is fixed. We show that, in the case of a moderate deviation of the maximum, the distribution of the moment of the maximum with appropriate normalization converges to the chi-square distribution with one degree of freedom. Similar results are obtained in the nonlattice case. </p>","PeriodicalId":18294,"journal":{"name":"Mathematical Notes","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Limit Theorem for the Moment of Maximum of a Random Walk Reaching a Fixed Level in the Region of Moderate Deviations\",\"authors\":\"M. A. Anokhina\",\"doi\":\"10.1134/s0001434624030192\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p> We consider a random walk with zero mean and finite variance whose steps are arithmetic. The arcsine law for the time the walk reaches its maximum is well known. In this paper, we consider the distribution of the moment of reaching the maximum under the assumption that the maximum value itself is fixed. We show that, in the case of a moderate deviation of the maximum, the distribution of the moment of the maximum with appropriate normalization converges to the chi-square distribution with one degree of freedom. Similar results are obtained in the nonlattice case. </p>\",\"PeriodicalId\":18294,\"journal\":{\"name\":\"Mathematical Notes\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Notes\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1134/s0001434624030192\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Notes","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0001434624030192","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 我们考虑一种具有零均值和有限方差的随机漫步,其步长为算术级数。关于行走达到最大值的时间的 arcsine 定律是众所周知的。在本文中,我们将在最大值本身固定的假设条件下考虑达到最大值时刻的分布。我们的研究表明,在最大值偏差适中的情况下,最大值时刻的分布经过适当的归一化后,会趋近于一个自由度的秩方分布。在非网格情况下也得到了类似的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Limit Theorem for the Moment of Maximum of a Random Walk Reaching a Fixed Level in the Region of Moderate Deviations

Abstract

We consider a random walk with zero mean and finite variance whose steps are arithmetic. The arcsine law for the time the walk reaches its maximum is well known. In this paper, we consider the distribution of the moment of reaching the maximum under the assumption that the maximum value itself is fixed. We show that, in the case of a moderate deviation of the maximum, the distribution of the moment of the maximum with appropriate normalization converges to the chi-square distribution with one degree of freedom. Similar results are obtained in the nonlattice case.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical Notes
Mathematical Notes 数学-数学
CiteScore
0.90
自引率
16.70%
发文量
179
审稿时长
24 months
期刊介绍: Mathematical Notes is a journal that publishes research papers and review articles in modern algebra, geometry and number theory, functional analysis, logic, set and measure theory, topology, probability and stochastics, differential and noncommutative geometry, operator and group theory, asymptotic and approximation methods, mathematical finance, linear and nonlinear equations, ergodic and spectral theory, operator algebras, and other related theoretical fields. It also presents rigorous results in mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信