GraphCNNpred:使用基于图形的深度学习系统预测股市指数

Yuhui Jin
{"title":"GraphCNNpred:使用基于图形的深度学习系统预测股市指数","authors":"Yuhui Jin","doi":"arxiv-2407.03760","DOIUrl":null,"url":null,"abstract":"Deep learning techniques for predicting stock market prices is an popular\ntopic in the field of data science. Customized feature engineering arises as\npre-processing tools of different stock market dataset. In this paper, we give\na graph neural network based convolutional neural network (CNN) model, that can\nbe applied on diverse source of data, in the attempt to extract features to\npredict the trends of indices of \\text{S}\\&\\text{P} 500, NASDAQ, DJI, NYSE, and\nRUSSEL.","PeriodicalId":501294,"journal":{"name":"arXiv - QuantFin - Computational Finance","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GraphCNNpred: A stock market indices prediction using a Graph based deep learning system\",\"authors\":\"Yuhui Jin\",\"doi\":\"arxiv-2407.03760\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning techniques for predicting stock market prices is an popular\\ntopic in the field of data science. Customized feature engineering arises as\\npre-processing tools of different stock market dataset. In this paper, we give\\na graph neural network based convolutional neural network (CNN) model, that can\\nbe applied on diverse source of data, in the attempt to extract features to\\npredict the trends of indices of \\\\text{S}\\\\&\\\\text{P} 500, NASDAQ, DJI, NYSE, and\\nRUSSEL.\",\"PeriodicalId\":501294,\"journal\":{\"name\":\"arXiv - QuantFin - Computational Finance\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Computational Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.03760\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Computational Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.03760","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

用于预测股市价格的深度学习技术是数据科学领域的一个热门话题。定制化特征工程是处理不同股市数据集的工具。在本文中,我们给出了一个基于图神经网络的卷积神经网络(CNN)模型,该模型可以应用于不同的数据源,试图提取特征来预测(text{S}\&text{P} 500、NASDAQ、DJI、NYSE 和 RUSSEL)指数的走势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GraphCNNpred: A stock market indices prediction using a Graph based deep learning system
Deep learning techniques for predicting stock market prices is an popular topic in the field of data science. Customized feature engineering arises as pre-processing tools of different stock market dataset. In this paper, we give a graph neural network based convolutional neural network (CNN) model, that can be applied on diverse source of data, in the attempt to extract features to predict the trends of indices of \text{S}\&\text{P} 500, NASDAQ, DJI, NYSE, and RUSSEL.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信