均场博弈和均场控制问题的统一连续时间 q-learning

Xiaoli Wei, Xiang Yu, Fengyi Yuan
{"title":"均场博弈和均场控制问题的统一连续时间 q-learning","authors":"Xiaoli Wei, Xiang Yu, Fengyi Yuan","doi":"arxiv-2407.04521","DOIUrl":null,"url":null,"abstract":"This paper studies the continuous-time q-learning in the mean-field\njump-diffusion models from the representative agent's perspective. To overcome\nthe challenge when the population distribution may not be directly observable,\nwe introduce the integrated q-function in decoupled form (decoupled\nIq-function) and establish its martingale characterization together with the\nvalue function, which provides a unified policy evaluation rule for both\nmean-field game (MFG) and mean-field control (MFC) problems. Moreover,\ndepending on the task to solve the MFG or MFC problem, we can employ the\ndecoupled Iq-function by different means to learn the mean-field equilibrium\npolicy or the mean-field optimal policy respectively. As a result, we devise a\nunified q-learning algorithm for both MFG and MFC problems by utilizing all\ntest policies stemming from the mean-field interactions. For several examples\nin the jump-diffusion setting, within and beyond the LQ framework, we can\nobtain the exact parameterization of the decoupled Iq-functions and the value\nfunctions, and illustrate our algorithm from the representative agent's\nperspective with satisfactory performance.","PeriodicalId":501294,"journal":{"name":"arXiv - QuantFin - Computational Finance","volume":"37 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unified continuous-time q-learning for mean-field game and mean-field control problems\",\"authors\":\"Xiaoli Wei, Xiang Yu, Fengyi Yuan\",\"doi\":\"arxiv-2407.04521\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies the continuous-time q-learning in the mean-field\\njump-diffusion models from the representative agent's perspective. To overcome\\nthe challenge when the population distribution may not be directly observable,\\nwe introduce the integrated q-function in decoupled form (decoupled\\nIq-function) and establish its martingale characterization together with the\\nvalue function, which provides a unified policy evaluation rule for both\\nmean-field game (MFG) and mean-field control (MFC) problems. Moreover,\\ndepending on the task to solve the MFG or MFC problem, we can employ the\\ndecoupled Iq-function by different means to learn the mean-field equilibrium\\npolicy or the mean-field optimal policy respectively. As a result, we devise a\\nunified q-learning algorithm for both MFG and MFC problems by utilizing all\\ntest policies stemming from the mean-field interactions. For several examples\\nin the jump-diffusion setting, within and beyond the LQ framework, we can\\nobtain the exact parameterization of the decoupled Iq-functions and the value\\nfunctions, and illustrate our algorithm from the representative agent's\\nperspective with satisfactory performance.\",\"PeriodicalId\":501294,\"journal\":{\"name\":\"arXiv - QuantFin - Computational Finance\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Computational Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.04521\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Computational Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.04521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文从代表代理的角度研究了均值-场跳跃-扩散模型中的连续时间q-学习。为了克服当种群分布可能无法直接观测时的挑战,我们引入了解耦形式的集成 q 函数(解耦 q 函数),并将其与值函数一起建立了马丁格尔特性,从而为均场博弈(MFG)和均场控制(MFC)问题提供了统一的策略评估规则。此外,根据求解 MFG 或 MFC 问题的任务不同,我们可以通过不同的方法利用解耦 Iq 函数来分别学习均值场均衡策略或均值场最优策略。因此,我们利用均值场相互作用产生的所有检验策略,为 MFG 和 MFC 问题设计了一种统一的 q-learning 算法。对于跳跃扩散设置中的几个例子,在 LQ 框架之内和之外,我们可以获得解耦 Iq 函数和价值函数的精确参数化,并从代表代理的角度说明了我们的算法,结果令人满意。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unified continuous-time q-learning for mean-field game and mean-field control problems
This paper studies the continuous-time q-learning in the mean-field jump-diffusion models from the representative agent's perspective. To overcome the challenge when the population distribution may not be directly observable, we introduce the integrated q-function in decoupled form (decoupled Iq-function) and establish its martingale characterization together with the value function, which provides a unified policy evaluation rule for both mean-field game (MFG) and mean-field control (MFC) problems. Moreover, depending on the task to solve the MFG or MFC problem, we can employ the decoupled Iq-function by different means to learn the mean-field equilibrium policy or the mean-field optimal policy respectively. As a result, we devise a unified q-learning algorithm for both MFG and MFC problems by utilizing all test policies stemming from the mean-field interactions. For several examples in the jump-diffusion setting, within and beyond the LQ framework, we can obtain the exact parameterization of the decoupled Iq-functions and the value functions, and illustrate our algorithm from the representative agent's perspective with satisfactory performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信