{"title":"南海北部珠江口盆地断裂后正断层的几何特征和三维地震特征分析","authors":"Yuanhang Liu, Jinwei Gao, Wanli Chen, Jiliang Wang, Umair Khan","doi":"10.1007/s13131-024-2337-4","DOIUrl":null,"url":null,"abstract":"<p>Based on high-resolution 3D seismic data acquired in the Pearl (Zhujiang) River Mouth Basin of the northern South China Sea, this study investigated the geometry, spatial extension, and throw distribution of the post-rift normal fault through detailed seismic interpretation and fault modeling. A total of 289 post-rift normal faults were identified in the study area and can be classified into four types: (1) isolated normal faults above the carbonate platform; (2) isolated normal faults cutting through the carbonate platform; (3) conjugate normal faults, and (4) connecting normal faults. Throw distribution analysis on the fault planes show that the vertical throw profiles of most normal fault exhibit flat-topped profiles. Isolated normal faults above the carbonate platform exhibit roughly concentric ellipses with maximum throw zones in the central section whereas the normal faults cutting through the carbonate platform miss the lowermost section due to the chaotic seismic reflections in the interior of the carbonate platform. The vertical throws of conjugate normal faults anomalously decrease toward their intersection region on the fault plane whereas the connecting normal faults present two maximum throw zones in the central section of the fault plane. According to the symmetric elliptical distribution model of fault throw, an estimation was made indicating that normal faults cutting through the carbonate platform extended downward between −1 308 s and −1 780 s (two-way travel time) in depth and may not penetrate the entire Liuhua carbonate platform. Moreover, it is observed that the distribution of karst caves on the top of the carbonate platform disaccord with those of hydrocarbon reservoirs and the post-rift normal faults cutting through the carbonate platform in the study area. We propose that these karst caves formed most probably by corrosive fluids derived from magmatic activities during the Dongsha event, rather than pore waters or hydrocarbons.</p>","PeriodicalId":6922,"journal":{"name":"Acta Oceanologica Sinica","volume":"51 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geometry and 3D seismic characterisation of post-rift normal faults in the Pearl River Mouth Basin, northern South China Sea\",\"authors\":\"Yuanhang Liu, Jinwei Gao, Wanli Chen, Jiliang Wang, Umair Khan\",\"doi\":\"10.1007/s13131-024-2337-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Based on high-resolution 3D seismic data acquired in the Pearl (Zhujiang) River Mouth Basin of the northern South China Sea, this study investigated the geometry, spatial extension, and throw distribution of the post-rift normal fault through detailed seismic interpretation and fault modeling. A total of 289 post-rift normal faults were identified in the study area and can be classified into four types: (1) isolated normal faults above the carbonate platform; (2) isolated normal faults cutting through the carbonate platform; (3) conjugate normal faults, and (4) connecting normal faults. Throw distribution analysis on the fault planes show that the vertical throw profiles of most normal fault exhibit flat-topped profiles. Isolated normal faults above the carbonate platform exhibit roughly concentric ellipses with maximum throw zones in the central section whereas the normal faults cutting through the carbonate platform miss the lowermost section due to the chaotic seismic reflections in the interior of the carbonate platform. The vertical throws of conjugate normal faults anomalously decrease toward their intersection region on the fault plane whereas the connecting normal faults present two maximum throw zones in the central section of the fault plane. According to the symmetric elliptical distribution model of fault throw, an estimation was made indicating that normal faults cutting through the carbonate platform extended downward between −1 308 s and −1 780 s (two-way travel time) in depth and may not penetrate the entire Liuhua carbonate platform. Moreover, it is observed that the distribution of karst caves on the top of the carbonate platform disaccord with those of hydrocarbon reservoirs and the post-rift normal faults cutting through the carbonate platform in the study area. We propose that these karst caves formed most probably by corrosive fluids derived from magmatic activities during the Dongsha event, rather than pore waters or hydrocarbons.</p>\",\"PeriodicalId\":6922,\"journal\":{\"name\":\"Acta Oceanologica Sinica\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Oceanologica Sinica\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s13131-024-2337-4\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OCEANOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Oceanologica Sinica","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s13131-024-2337-4","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
Geometry and 3D seismic characterisation of post-rift normal faults in the Pearl River Mouth Basin, northern South China Sea
Based on high-resolution 3D seismic data acquired in the Pearl (Zhujiang) River Mouth Basin of the northern South China Sea, this study investigated the geometry, spatial extension, and throw distribution of the post-rift normal fault through detailed seismic interpretation and fault modeling. A total of 289 post-rift normal faults were identified in the study area and can be classified into four types: (1) isolated normal faults above the carbonate platform; (2) isolated normal faults cutting through the carbonate platform; (3) conjugate normal faults, and (4) connecting normal faults. Throw distribution analysis on the fault planes show that the vertical throw profiles of most normal fault exhibit flat-topped profiles. Isolated normal faults above the carbonate platform exhibit roughly concentric ellipses with maximum throw zones in the central section whereas the normal faults cutting through the carbonate platform miss the lowermost section due to the chaotic seismic reflections in the interior of the carbonate platform. The vertical throws of conjugate normal faults anomalously decrease toward their intersection region on the fault plane whereas the connecting normal faults present two maximum throw zones in the central section of the fault plane. According to the symmetric elliptical distribution model of fault throw, an estimation was made indicating that normal faults cutting through the carbonate platform extended downward between −1 308 s and −1 780 s (two-way travel time) in depth and may not penetrate the entire Liuhua carbonate platform. Moreover, it is observed that the distribution of karst caves on the top of the carbonate platform disaccord with those of hydrocarbon reservoirs and the post-rift normal faults cutting through the carbonate platform in the study area. We propose that these karst caves formed most probably by corrosive fluids derived from magmatic activities during the Dongsha event, rather than pore waters or hydrocarbons.
期刊介绍:
Founded in 1982, Acta Oceanologica Sinica is the official bi-monthly journal of the Chinese Society of Oceanography. It seeks to provide a forum for research papers in the field of oceanography from all over the world. In working to advance scholarly communication it has made the fast publication of high-quality research papers within this field its primary goal.
The journal encourages submissions from all branches of oceanography, including marine physics, marine chemistry, marine geology, marine biology, marine hydrology, marine meteorology, ocean engineering, marine remote sensing and marine environment sciences.
It publishes original research papers, review articles as well as research notes covering the whole spectrum of oceanography. Special issues emanating from related conferences and meetings are also considered. All papers are subject to peer review and are published online at SpringerLink.