Shuai Li, Zijun Fang, Majun Peng, Zhanda Zhu, Hong Lei, Qiang Li
{"title":"通过双折射补偿实现 532 纳米波长腔内 Nd:YAG/LBO 激光器的功率缩放","authors":"Shuai Li, Zijun Fang, Majun Peng, Zhanda Zhu, Hong Lei, Qiang Li","doi":"10.1088/1612-202x/ad59fa","DOIUrl":null,"url":null,"abstract":"We report an effective method to reduce the impact of polarization state changes caused by thermal birefringence in intra-cavity frequency-doubled laser. The laser consists of a diode side pumped Nd:YAG module, an acousto-optic modulator Q-switch, and an LBO crystal used for SHG generation in 532 nm laser. The effect of thermal birefringence originated by the Nd:YAG rod with concave-shape end surfaces on SHG efficiency is compensated by the insertion of a <italic toggle=\"yes\">λ</italic>/8 plate into the cavity. At the repetition frequency of 9 kHz, the 532 nm laser achieves a maximum output power of 23.8 W, a pulse duration of 60 ns (FWHM), and a beam quality factor of <italic toggle=\"yes\">M<sub>x</sub>\n<sup>2</sup>\n</italic>× <italic toggle=\"yes\">M<sub>y</sub>\n<sup>2</sup>\n</italic> = 1.52 × 1.43. Compared with the <italic toggle=\"yes\">λ</italic>/4 plate and without plate, the maximum average power of the laser with the <italic toggle=\"yes\">λ</italic>/8 plate has increased by 22.7% and 66.4%, respectively, the beam quality factor has also been greatly improved correspondingly. This method provides a new solution for lasers to compensate thermally induced birefringence.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Power scaling of intra-cavity Nd:YAG/LBO laser at 532 nm by birefringence compensation\",\"authors\":\"Shuai Li, Zijun Fang, Majun Peng, Zhanda Zhu, Hong Lei, Qiang Li\",\"doi\":\"10.1088/1612-202x/ad59fa\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report an effective method to reduce the impact of polarization state changes caused by thermal birefringence in intra-cavity frequency-doubled laser. The laser consists of a diode side pumped Nd:YAG module, an acousto-optic modulator Q-switch, and an LBO crystal used for SHG generation in 532 nm laser. The effect of thermal birefringence originated by the Nd:YAG rod with concave-shape end surfaces on SHG efficiency is compensated by the insertion of a <italic toggle=\\\"yes\\\">λ</italic>/8 plate into the cavity. At the repetition frequency of 9 kHz, the 532 nm laser achieves a maximum output power of 23.8 W, a pulse duration of 60 ns (FWHM), and a beam quality factor of <italic toggle=\\\"yes\\\">M<sub>x</sub>\\n<sup>2</sup>\\n</italic>× <italic toggle=\\\"yes\\\">M<sub>y</sub>\\n<sup>2</sup>\\n</italic> = 1.52 × 1.43. Compared with the <italic toggle=\\\"yes\\\">λ</italic>/4 plate and without plate, the maximum average power of the laser with the <italic toggle=\\\"yes\\\">λ</italic>/8 plate has increased by 22.7% and 66.4%, respectively, the beam quality factor has also been greatly improved correspondingly. This method provides a new solution for lasers to compensate thermally induced birefringence.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1612-202x/ad59fa\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1612-202x/ad59fa","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Power scaling of intra-cavity Nd:YAG/LBO laser at 532 nm by birefringence compensation
We report an effective method to reduce the impact of polarization state changes caused by thermal birefringence in intra-cavity frequency-doubled laser. The laser consists of a diode side pumped Nd:YAG module, an acousto-optic modulator Q-switch, and an LBO crystal used for SHG generation in 532 nm laser. The effect of thermal birefringence originated by the Nd:YAG rod with concave-shape end surfaces on SHG efficiency is compensated by the insertion of a λ/8 plate into the cavity. At the repetition frequency of 9 kHz, the 532 nm laser achieves a maximum output power of 23.8 W, a pulse duration of 60 ns (FWHM), and a beam quality factor of Mx2× My2 = 1.52 × 1.43. Compared with the λ/4 plate and without plate, the maximum average power of the laser with the λ/8 plate has increased by 22.7% and 66.4%, respectively, the beam quality factor has also been greatly improved correspondingly. This method provides a new solution for lasers to compensate thermally induced birefringence.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.