{"title":"加权表示函数的下界","authors":"Shi-Qiang Chen","doi":"10.1007/s10998-024-00592-3","DOIUrl":null,"url":null,"abstract":"<p>For any given set <i>A</i> of nonnegative integers and for any given two positive integers <span>\\(k_1,k_2\\)</span>, <span>\\(R_{k_1,k_2}(A,n)\\)</span> is defined as the number of solutions of the equation <span>\\(n=k_1a_1+k_2a_2\\)</span> with <span>\\(a_1,a_2\\in A\\)</span>. In this paper, we prove that if integer <span>\\(k\\ge 2\\)</span> and set <span>\\(A\\subseteq {\\mathbb {N}}\\)</span> such that <span>\\(R_{1,k}(A,n)=R_{1,k}({\\mathbb {N}}\\setminus A,n)\\)</span> holds for all integers <span>\\(n\\ge n_0\\)</span>, then <span>\\(R_{1,k}(A,n)\\gg \\log n\\)</span>.</p>","PeriodicalId":49706,"journal":{"name":"Periodica Mathematica Hungarica","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The lower bound of weighted representation function\",\"authors\":\"Shi-Qiang Chen\",\"doi\":\"10.1007/s10998-024-00592-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For any given set <i>A</i> of nonnegative integers and for any given two positive integers <span>\\\\(k_1,k_2\\\\)</span>, <span>\\\\(R_{k_1,k_2}(A,n)\\\\)</span> is defined as the number of solutions of the equation <span>\\\\(n=k_1a_1+k_2a_2\\\\)</span> with <span>\\\\(a_1,a_2\\\\in A\\\\)</span>. In this paper, we prove that if integer <span>\\\\(k\\\\ge 2\\\\)</span> and set <span>\\\\(A\\\\subseteq {\\\\mathbb {N}}\\\\)</span> such that <span>\\\\(R_{1,k}(A,n)=R_{1,k}({\\\\mathbb {N}}\\\\setminus A,n)\\\\)</span> holds for all integers <span>\\\\(n\\\\ge n_0\\\\)</span>, then <span>\\\\(R_{1,k}(A,n)\\\\gg \\\\log n\\\\)</span>.</p>\",\"PeriodicalId\":49706,\"journal\":{\"name\":\"Periodica Mathematica Hungarica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Periodica Mathematica Hungarica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10998-024-00592-3\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Periodica Mathematica Hungarica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10998-024-00592-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
The lower bound of weighted representation function
For any given set A of nonnegative integers and for any given two positive integers \(k_1,k_2\), \(R_{k_1,k_2}(A,n)\) is defined as the number of solutions of the equation \(n=k_1a_1+k_2a_2\) with \(a_1,a_2\in A\). In this paper, we prove that if integer \(k\ge 2\) and set \(A\subseteq {\mathbb {N}}\) such that \(R_{1,k}(A,n)=R_{1,k}({\mathbb {N}}\setminus A,n)\) holds for all integers \(n\ge n_0\), then \(R_{1,k}(A,n)\gg \log n\).
期刊介绍:
Periodica Mathematica Hungarica is devoted to publishing research articles in all areas of pure and applied mathematics as well as theoretical computer science. To be published in the Periodica, a paper must be correct, new, and significant. Very strong submissions (upon the consent of the author) will be redirected to Acta Mathematica Hungarica.
Periodica Mathematica Hungarica is the journal of the Hungarian Mathematical Society (János Bolyai Mathematical Society). The main profile of the journal is in pure mathematics, being open to applied mathematical papers with significant mathematical content.