非平面复数空间形式中霍普夫超曲面的新特征

Pub Date : 2024-07-05 DOI:10.1007/s10998-024-00604-2
Wenjie Wang
{"title":"非平面复数空间形式中霍普夫超曲面的新特征","authors":"Wenjie Wang","doi":"10.1007/s10998-024-00604-2","DOIUrl":null,"url":null,"abstract":"<p>It is proved that the <span>\\(*\\)</span>-Ricci operator of a real hypersurface in a nonflat complex space form is Reeb parallel if and only if the hypersurface is Hopf. As an application of this result, we obtain a classification theorem of real hypersurfaces with parallel <span>\\(*\\)</span>-Ricci operators. These results answer some open questions posed by Kaimakamis and Panagiotidou a decade ago.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New characterization of Hopf hypersurfaces in nonflat complex space forms\",\"authors\":\"Wenjie Wang\",\"doi\":\"10.1007/s10998-024-00604-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>It is proved that the <span>\\\\(*\\\\)</span>-Ricci operator of a real hypersurface in a nonflat complex space form is Reeb parallel if and only if the hypersurface is Hopf. As an application of this result, we obtain a classification theorem of real hypersurfaces with parallel <span>\\\\(*\\\\)</span>-Ricci operators. These results answer some open questions posed by Kaimakamis and Panagiotidou a decade ago.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10998-024-00604-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10998-024-00604-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究证明,如果且只有当超曲面是霍普夫(Hopf)超曲面时,非平面复空间形式的实超曲面的(*\)-里奇算子才是里布平行算子。作为这一结果的应用,我们得到了具有平行(*\)-Ricci 算子的实超曲面的分类定理。这些结果回答了凯马卡米斯(Kaimakamis)和帕纳吉奥蒂杜(Panagiotidou)十年前提出的一些悬而未决的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
New characterization of Hopf hypersurfaces in nonflat complex space forms

It is proved that the \(*\)-Ricci operator of a real hypersurface in a nonflat complex space form is Reeb parallel if and only if the hypersurface is Hopf. As an application of this result, we obtain a classification theorem of real hypersurfaces with parallel \(*\)-Ricci operators. These results answer some open questions posed by Kaimakamis and Panagiotidou a decade ago.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信