{"title":"二阶奇异差分方程的有界解和类同解","authors":"Ruyun Ma, Jiao Zhao","doi":"10.1007/s10998-024-00596-z","DOIUrl":null,"url":null,"abstract":"<p>We are concerned with the existence of positive solutions for the boundary value problem </p><span>$$\\begin{aligned} \\left\\{ \\begin{array}{ll} -D^{2}u(n-1)+c(n)Du(n)+a(n)u(n)=\\frac{b(n)}{(u(n))^p},&{}\\quad n\\in \\mathbb {Z},\\\\ \\lim _{|n|\\rightarrow +\\infty }u(n)=0,\\\\ \\end{array}\\right. \\end{aligned}$$</span><p>where <span>\\(a,b:\\mathbb {Z}\\rightarrow \\mathbb {R}\\)</span>, <span>\\(c:\\mathbb {Z}\\rightarrow (0,1)\\)</span>, <span>\\(p>0\\)</span>, and <i>D</i> is the forward difference operator. The main tools used are fixed point theorems of cone-compressing and cone-condensing type.</p>","PeriodicalId":49706,"journal":{"name":"Periodica Mathematica Hungarica","volume":"1 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bounded and homoclinic-like solutions of second-order singular difference equations\",\"authors\":\"Ruyun Ma, Jiao Zhao\",\"doi\":\"10.1007/s10998-024-00596-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We are concerned with the existence of positive solutions for the boundary value problem </p><span>$$\\\\begin{aligned} \\\\left\\\\{ \\\\begin{array}{ll} -D^{2}u(n-1)+c(n)Du(n)+a(n)u(n)=\\\\frac{b(n)}{(u(n))^p},&{}\\\\quad n\\\\in \\\\mathbb {Z},\\\\\\\\ \\\\lim _{|n|\\\\rightarrow +\\\\infty }u(n)=0,\\\\\\\\ \\\\end{array}\\\\right. \\\\end{aligned}$$</span><p>where <span>\\\\(a,b:\\\\mathbb {Z}\\\\rightarrow \\\\mathbb {R}\\\\)</span>, <span>\\\\(c:\\\\mathbb {Z}\\\\rightarrow (0,1)\\\\)</span>, <span>\\\\(p>0\\\\)</span>, and <i>D</i> is the forward difference operator. The main tools used are fixed point theorems of cone-compressing and cone-condensing type.</p>\",\"PeriodicalId\":49706,\"journal\":{\"name\":\"Periodica Mathematica Hungarica\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Periodica Mathematica Hungarica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10998-024-00596-z\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Periodica Mathematica Hungarica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10998-024-00596-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们关注的是边界值问题 $$\begin{aligned} 的正解的存在性-D^{2}u(n-1)+c(n)Du(n)+a(n)u(n)=frac{b(n)}{(u(n))^p},&{}\quad n\in \mathbb {Z},\\lim _{|n|\rightarrow +\infty }u(n)=0,\\\end{array}\right.\end{aligned}$where \(a,b:\mathbb {Z}\rightarrow \mathbb {R}\), \(c:\mathbb {Z}\rightarrow (0,1)\), \(p>0\), and D is the forward difference operator.使用的主要工具是锥压缩和锥冷凝类型的定点定理。
where \(a,b:\mathbb {Z}\rightarrow \mathbb {R}\), \(c:\mathbb {Z}\rightarrow (0,1)\), \(p>0\), and D is the forward difference operator. The main tools used are fixed point theorems of cone-compressing and cone-condensing type.
期刊介绍:
Periodica Mathematica Hungarica is devoted to publishing research articles in all areas of pure and applied mathematics as well as theoretical computer science. To be published in the Periodica, a paper must be correct, new, and significant. Very strong submissions (upon the consent of the author) will be redirected to Acta Mathematica Hungarica.
Periodica Mathematica Hungarica is the journal of the Hungarian Mathematical Society (János Bolyai Mathematical Society). The main profile of the journal is in pure mathematics, being open to applied mathematical papers with significant mathematical content.