一类芬斯勒空间的共形向量场

Pub Date : 2024-07-07 DOI:10.1007/s10998-024-00594-1
Guojun Yang
{"title":"一类芬斯勒空间的共形向量场","authors":"Guojun Yang","doi":"10.1007/s10998-024-00594-1","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we first give two fundamental principles to characterize conformal vector fields of <span>\\((\\alpha ,\\beta )\\)</span>-spaces to be homothetic and determine the local structure of those homothetic fields. Then we use the principles to study conformal vector fields of <span>\\((\\alpha ,\\beta )\\)</span>-spaces under certain curvature conditions. Besides, we construct a family of non-homothetic conformal vector fields on a family of locally projectively flat Randers spaces.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conformal vector fields of a class of Finsler spaces\",\"authors\":\"Guojun Yang\",\"doi\":\"10.1007/s10998-024-00594-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we first give two fundamental principles to characterize conformal vector fields of <span>\\\\((\\\\alpha ,\\\\beta )\\\\)</span>-spaces to be homothetic and determine the local structure of those homothetic fields. Then we use the principles to study conformal vector fields of <span>\\\\((\\\\alpha ,\\\\beta )\\\\)</span>-spaces under certain curvature conditions. Besides, we construct a family of non-homothetic conformal vector fields on a family of locally projectively flat Randers spaces.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10998-024-00594-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10998-024-00594-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们首先给出了两个基本原理来表征 \((\alpha ,\beta )\) 空间的共形向量场是同调的,并确定了这些同调场的局部结构。然后,我们利用这些原理来研究在一定曲率条件下的((\alpha ,\beta))空间的共形向量场。此外,我们还在一系列局部投影平坦的兰德斯空间上构造了非同调共形向量场。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Conformal vector fields of a class of Finsler spaces

In this paper, we first give two fundamental principles to characterize conformal vector fields of \((\alpha ,\beta )\)-spaces to be homothetic and determine the local structure of those homothetic fields. Then we use the principles to study conformal vector fields of \((\alpha ,\beta )\)-spaces under certain curvature conditions. Besides, we construct a family of non-homothetic conformal vector fields on a family of locally projectively flat Randers spaces.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信