{"title":"构建求解四阶非线性边界值问题的高阶数值方法","authors":"Quang A Dang, Thanh Huong Nguyen, Vinh Quang Vu","doi":"10.1007/s11075-024-01879-9","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we construct numerical methods of fourth, sixth and eighth orders convergence for solving fully fourth order nonlinear differential equation with the Dirichlet boundary conditions. The methods are based on the use of the trapezoidal quadrature formula with corrections for computing integrals at each iteration of the continuous iterative method for finding the solutions of the BVP. We get the error estimates for the actually obtained numerical solutions of the problem. Many numerical examples confirm the theoretical conclusions and show the efficiency of the proposed methods in comparison with some existing methods.</p>","PeriodicalId":54709,"journal":{"name":"Numerical Algorithms","volume":"36 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Construction of high order numerical methods for solving fourth order nonlinear boundary value problems\",\"authors\":\"Quang A Dang, Thanh Huong Nguyen, Vinh Quang Vu\",\"doi\":\"10.1007/s11075-024-01879-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we construct numerical methods of fourth, sixth and eighth orders convergence for solving fully fourth order nonlinear differential equation with the Dirichlet boundary conditions. The methods are based on the use of the trapezoidal quadrature formula with corrections for computing integrals at each iteration of the continuous iterative method for finding the solutions of the BVP. We get the error estimates for the actually obtained numerical solutions of the problem. Many numerical examples confirm the theoretical conclusions and show the efficiency of the proposed methods in comparison with some existing methods.</p>\",\"PeriodicalId\":54709,\"journal\":{\"name\":\"Numerical Algorithms\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerical Algorithms\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11075-024-01879-9\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Algorithms","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11075-024-01879-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Construction of high order numerical methods for solving fourth order nonlinear boundary value problems
In this paper, we construct numerical methods of fourth, sixth and eighth orders convergence for solving fully fourth order nonlinear differential equation with the Dirichlet boundary conditions. The methods are based on the use of the trapezoidal quadrature formula with corrections for computing integrals at each iteration of the continuous iterative method for finding the solutions of the BVP. We get the error estimates for the actually obtained numerical solutions of the problem. Many numerical examples confirm the theoretical conclusions and show the efficiency of the proposed methods in comparison with some existing methods.
期刊介绍:
The journal Numerical Algorithms is devoted to numerical algorithms. It publishes original and review papers on all the aspects of numerical algorithms: new algorithms, theoretical results, implementation, numerical stability, complexity, parallel computing, subroutines, and applications. Papers on computer algebra related to obtaining numerical results will also be considered. It is intended to publish only high quality papers containing material not published elsewhere.