构建求解四阶非线性边界值问题的高阶数值方法

IF 1.7 3区 数学 Q2 MATHEMATICS, APPLIED
Quang A Dang, Thanh Huong Nguyen, Vinh Quang Vu
{"title":"构建求解四阶非线性边界值问题的高阶数值方法","authors":"Quang A Dang, Thanh Huong Nguyen, Vinh Quang Vu","doi":"10.1007/s11075-024-01879-9","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we construct numerical methods of fourth, sixth and eighth orders convergence for solving fully fourth order nonlinear differential equation with the Dirichlet boundary conditions. The methods are based on the use of the trapezoidal quadrature formula with corrections for computing integrals at each iteration of the continuous iterative method for finding the solutions of the BVP. We get the error estimates for the actually obtained numerical solutions of the problem. Many numerical examples confirm the theoretical conclusions and show the efficiency of the proposed methods in comparison with some existing methods.</p>","PeriodicalId":54709,"journal":{"name":"Numerical Algorithms","volume":"36 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Construction of high order numerical methods for solving fourth order nonlinear boundary value problems\",\"authors\":\"Quang A Dang, Thanh Huong Nguyen, Vinh Quang Vu\",\"doi\":\"10.1007/s11075-024-01879-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we construct numerical methods of fourth, sixth and eighth orders convergence for solving fully fourth order nonlinear differential equation with the Dirichlet boundary conditions. The methods are based on the use of the trapezoidal quadrature formula with corrections for computing integrals at each iteration of the continuous iterative method for finding the solutions of the BVP. We get the error estimates for the actually obtained numerical solutions of the problem. Many numerical examples confirm the theoretical conclusions and show the efficiency of the proposed methods in comparison with some existing methods.</p>\",\"PeriodicalId\":54709,\"journal\":{\"name\":\"Numerical Algorithms\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerical Algorithms\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11075-024-01879-9\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Algorithms","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11075-024-01879-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们构建了四阶、六阶和八阶收敛数值方法,用于求解具有 Dirichlet 边界条件的全四阶非线性微分方程。这些方法基于梯形正交公式和修正,用于计算 BVP 解的连续迭代法每次迭代的积分。我们得到了实际获得的问题数值解的误差估计值。许多数值示例证实了理论结论,并显示了所提方法与一些现有方法相比的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Construction of high order numerical methods for solving fourth order nonlinear boundary value problems

In this paper, we construct numerical methods of fourth, sixth and eighth orders convergence for solving fully fourth order nonlinear differential equation with the Dirichlet boundary conditions. The methods are based on the use of the trapezoidal quadrature formula with corrections for computing integrals at each iteration of the continuous iterative method for finding the solutions of the BVP. We get the error estimates for the actually obtained numerical solutions of the problem. Many numerical examples confirm the theoretical conclusions and show the efficiency of the proposed methods in comparison with some existing methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Numerical Algorithms
Numerical Algorithms 数学-应用数学
CiteScore
4.00
自引率
9.50%
发文量
201
审稿时长
9 months
期刊介绍: The journal Numerical Algorithms is devoted to numerical algorithms. It publishes original and review papers on all the aspects of numerical algorithms: new algorithms, theoretical results, implementation, numerical stability, complexity, parallel computing, subroutines, and applications. Papers on computer algebra related to obtaining numerical results will also be considered. It is intended to publish only high quality papers containing material not published elsewhere.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信