{"title":"艾特-萨哈利亚模型的无条件保正近似:米尔斯坦型显式方案","authors":"Yingsong Jiang, Ruishu Liu, Xiaojie Wang, Jinghua Zhuo","doi":"10.1007/s11075-024-01861-5","DOIUrl":null,"url":null,"abstract":"<p>The present article aims to design and analyze efficient first-order strong schemes for a generalized Aït-Sahalia type model arising in mathematical finance and evolving in a positive domain <span>\\((0, \\infty )\\)</span>, which possesses a diffusion term with superlinear growth and a highly nonlinear drift that blows up at the origin. Such a complicated structure of the model unavoidably causes essential difficulties in the construction and convergence analysis of time discretizations. By incorporating implicitness in the term <span>\\(\\alpha _{-1} x^{-1}\\)</span> and a corrective mapping <span>\\(\\Phi _h\\)</span> in the recursion, we develop a novel class of explicit and unconditionally positivity-preserving (i.e., for any step-size <span>\\(h>0\\)</span>) Milstein-type schemes for the underlying model. In both non-critical and general critical cases, we introduce a novel approach to analyze mean-square error bounds of the novel schemes, without relying on a priori high-order moment bounds of the numerical approximations. The expected order-one mean-square convergence is attained for the proposed scheme. The above theoretical guarantee can be used to justify the optimal complexity of the Multilevel Monte Carlo method. Numerical experiments are finally provided to verify the theoretical findings.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unconditionally positivity-preserving approximations of the Aït-Sahalia type model: Explicit Milstein-type schemes\",\"authors\":\"Yingsong Jiang, Ruishu Liu, Xiaojie Wang, Jinghua Zhuo\",\"doi\":\"10.1007/s11075-024-01861-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The present article aims to design and analyze efficient first-order strong schemes for a generalized Aït-Sahalia type model arising in mathematical finance and evolving in a positive domain <span>\\\\((0, \\\\infty )\\\\)</span>, which possesses a diffusion term with superlinear growth and a highly nonlinear drift that blows up at the origin. Such a complicated structure of the model unavoidably causes essential difficulties in the construction and convergence analysis of time discretizations. By incorporating implicitness in the term <span>\\\\(\\\\alpha _{-1} x^{-1}\\\\)</span> and a corrective mapping <span>\\\\(\\\\Phi _h\\\\)</span> in the recursion, we develop a novel class of explicit and unconditionally positivity-preserving (i.e., for any step-size <span>\\\\(h>0\\\\)</span>) Milstein-type schemes for the underlying model. In both non-critical and general critical cases, we introduce a novel approach to analyze mean-square error bounds of the novel schemes, without relying on a priori high-order moment bounds of the numerical approximations. The expected order-one mean-square convergence is attained for the proposed scheme. The above theoretical guarantee can be used to justify the optimal complexity of the Multilevel Monte Carlo method. Numerical experiments are finally provided to verify the theoretical findings.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11075-024-01861-5\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11075-024-01861-5","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Unconditionally positivity-preserving approximations of the Aït-Sahalia type model: Explicit Milstein-type schemes
The present article aims to design and analyze efficient first-order strong schemes for a generalized Aït-Sahalia type model arising in mathematical finance and evolving in a positive domain \((0, \infty )\), which possesses a diffusion term with superlinear growth and a highly nonlinear drift that blows up at the origin. Such a complicated structure of the model unavoidably causes essential difficulties in the construction and convergence analysis of time discretizations. By incorporating implicitness in the term \(\alpha _{-1} x^{-1}\) and a corrective mapping \(\Phi _h\) in the recursion, we develop a novel class of explicit and unconditionally positivity-preserving (i.e., for any step-size \(h>0\)) Milstein-type schemes for the underlying model. In both non-critical and general critical cases, we introduce a novel approach to analyze mean-square error bounds of the novel schemes, without relying on a priori high-order moment bounds of the numerical approximations. The expected order-one mean-square convergence is attained for the proposed scheme. The above theoretical guarantee can be used to justify the optimal complexity of the Multilevel Monte Carlo method. Numerical experiments are finally provided to verify the theoretical findings.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.