{"title":"有理连接品种族中的零循环","authors":"Morten Lüders","doi":"10.1007/s00029-024-00963-1","DOIUrl":null,"url":null,"abstract":"<p>We study zero-cycles in families of rationally connected varieties. We show that for a smooth projective scheme over a henselian discrete valuation ring the restriction of relative zero cycles to the special fiber induces an isomorphism on Chow groups if the special fiber is separably rationally connected. We further extend this result to certain higher Chow groups and develop conjectures in the non-smooth case. Our main results generalise a result of Kollár (Publ. Res. Inst. Math. Sci. 40(3):689–708, 2004).</p>","PeriodicalId":501600,"journal":{"name":"Selecta Mathematica","volume":"367 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Zero-cycles in families of rationally connected varieties\",\"authors\":\"Morten Lüders\",\"doi\":\"10.1007/s00029-024-00963-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study zero-cycles in families of rationally connected varieties. We show that for a smooth projective scheme over a henselian discrete valuation ring the restriction of relative zero cycles to the special fiber induces an isomorphism on Chow groups if the special fiber is separably rationally connected. We further extend this result to certain higher Chow groups and develop conjectures in the non-smooth case. Our main results generalise a result of Kollár (Publ. Res. Inst. Math. Sci. 40(3):689–708, 2004).</p>\",\"PeriodicalId\":501600,\"journal\":{\"name\":\"Selecta Mathematica\",\"volume\":\"367 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Selecta Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00029-024-00963-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Selecta Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00029-024-00963-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Zero-cycles in families of rationally connected varieties
We study zero-cycles in families of rationally connected varieties. We show that for a smooth projective scheme over a henselian discrete valuation ring the restriction of relative zero cycles to the special fiber induces an isomorphism on Chow groups if the special fiber is separably rationally connected. We further extend this result to certain higher Chow groups and develop conjectures in the non-smooth case. Our main results generalise a result of Kollár (Publ. Res. Inst. Math. Sci. 40(3):689–708, 2004).