Pedro Henrique Del Bianco Hokama, Carla Negri Lintzmayer, Mário César San Felice
{"title":"有无人机的旅行推销员问题的快速启发式","authors":"Pedro Henrique Del Bianco Hokama, Carla Negri Lintzmayer, Mário César San Felice","doi":"10.1007/s11590-024-02134-9","DOIUrl":null,"url":null,"abstract":"<p>The <i>Flying Sidekick Traveling Salesman Problem (FSTSP)</i> consists of using one truck and one drone to perform deliveries to a set of customers. The drone is limited to delivering to one customer at a time, after which it returns to the truck, from where it can be launched again. The goal is to minimize the time required to service all customers and return both vehicles to the depot. In the literature, we can find heuristics for this problem that follow the order-first split-second approach: find a Hamiltonian cycle <i>h</i> with all customers, and then remove some customers to be handled by the drone while deciding from where the drone will be launched and where it will be retrieved. Indeed, they optimally solve the <i>h-FSTSP</i>, which is a variation that consists of solving the FSTSP while respecting a given initial cycle <i>h</i>. We present the Lazy Drone Property, which guarantees that only some combinations of nodes for the launch and retrieval of the drone need to be considered by algorithms for the h-FSTSP. We also present an algorithm that uses the property, and we show experimental results which corroborate its effectiveness in decreasing the running time of such algorithms. Our algorithm was shown to be more than 84 times faster than the previously best-known ones over the literature benchmark. Moreover, on average, it considered an amount of launch and retrieval pairs that is linear on the number of customers, indicating that the algorithm’s performance should be sustainable for larger instances.\n</p>","PeriodicalId":49720,"journal":{"name":"Optimization Letters","volume":"29 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A faster heuristic for the traveling salesman problem with drone\",\"authors\":\"Pedro Henrique Del Bianco Hokama, Carla Negri Lintzmayer, Mário César San Felice\",\"doi\":\"10.1007/s11590-024-02134-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The <i>Flying Sidekick Traveling Salesman Problem (FSTSP)</i> consists of using one truck and one drone to perform deliveries to a set of customers. The drone is limited to delivering to one customer at a time, after which it returns to the truck, from where it can be launched again. The goal is to minimize the time required to service all customers and return both vehicles to the depot. In the literature, we can find heuristics for this problem that follow the order-first split-second approach: find a Hamiltonian cycle <i>h</i> with all customers, and then remove some customers to be handled by the drone while deciding from where the drone will be launched and where it will be retrieved. Indeed, they optimally solve the <i>h-FSTSP</i>, which is a variation that consists of solving the FSTSP while respecting a given initial cycle <i>h</i>. We present the Lazy Drone Property, which guarantees that only some combinations of nodes for the launch and retrieval of the drone need to be considered by algorithms for the h-FSTSP. We also present an algorithm that uses the property, and we show experimental results which corroborate its effectiveness in decreasing the running time of such algorithms. Our algorithm was shown to be more than 84 times faster than the previously best-known ones over the literature benchmark. Moreover, on average, it considered an amount of launch and retrieval pairs that is linear on the number of customers, indicating that the algorithm’s performance should be sustainable for larger instances.\\n</p>\",\"PeriodicalId\":49720,\"journal\":{\"name\":\"Optimization Letters\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optimization Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11590-024-02134-9\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimization Letters","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11590-024-02134-9","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
A faster heuristic for the traveling salesman problem with drone
The Flying Sidekick Traveling Salesman Problem (FSTSP) consists of using one truck and one drone to perform deliveries to a set of customers. The drone is limited to delivering to one customer at a time, after which it returns to the truck, from where it can be launched again. The goal is to minimize the time required to service all customers and return both vehicles to the depot. In the literature, we can find heuristics for this problem that follow the order-first split-second approach: find a Hamiltonian cycle h with all customers, and then remove some customers to be handled by the drone while deciding from where the drone will be launched and where it will be retrieved. Indeed, they optimally solve the h-FSTSP, which is a variation that consists of solving the FSTSP while respecting a given initial cycle h. We present the Lazy Drone Property, which guarantees that only some combinations of nodes for the launch and retrieval of the drone need to be considered by algorithms for the h-FSTSP. We also present an algorithm that uses the property, and we show experimental results which corroborate its effectiveness in decreasing the running time of such algorithms. Our algorithm was shown to be more than 84 times faster than the previously best-known ones over the literature benchmark. Moreover, on average, it considered an amount of launch and retrieval pairs that is linear on the number of customers, indicating that the algorithm’s performance should be sustainable for larger instances.
期刊介绍:
Optimization Letters is an international journal covering all aspects of optimization, including theory, algorithms, computational studies, and applications, and providing an outlet for rapid publication of short communications in the field. Originality, significance, quality and clarity are the essential criteria for choosing the material to be published.
Optimization Letters has been expanding in all directions at an astonishing rate during the last few decades. New algorithmic and theoretical techniques have been developed, the diffusion into other disciplines has proceeded at a rapid pace, and our knowledge of all aspects of the field has grown even more profound. At the same time one of the most striking trends in optimization is the constantly increasing interdisciplinary nature of the field.
Optimization Letters aims to communicate in a timely fashion all recent developments in optimization with concise short articles (limited to a total of ten journal pages). Such concise articles will be easily accessible by readers working in any aspects of optimization and wish to be informed of recent developments.