实现信息学驱动的新型核废料形式设计

IF 6.2 Q1 CHEMISTRY, MULTIDISCIPLINARY
Vinay I. Hegde, Miroslava Peterson, Sarah I. Allec, Xiaonan Lu, Thiruvillamalai Mahadevan, Thanh Nguyen, Jayani Kalahe, Jared Oshiro, Robert J. Seffens, Ethan K. Nickerson, Jincheng Du, Brian J. Riley, John D. Vienna and James E. Saal
{"title":"实现信息学驱动的新型核废料形式设计","authors":"Vinay I. Hegde, Miroslava Peterson, Sarah I. Allec, Xiaonan Lu, Thiruvillamalai Mahadevan, Thanh Nguyen, Jayani Kalahe, Jared Oshiro, Robert J. Seffens, Ethan K. Nickerson, Jincheng Du, Brian J. Riley, John D. Vienna and James E. Saal","doi":"10.1039/D4DD00096J","DOIUrl":null,"url":null,"abstract":"<p >Informatics-driven approaches, such as machine learning and sequential experimental design, have shown the potential to drastically impact next-generation materials discovery and design. In this perspective, we present a few guiding principles for applying informatics-based methods towards the design of novel nuclear waste forms. We advocate for adopting a system design approach, and describe the effective usage of data-driven methods in every stage of such a design process. We demonstrate how this approach can optimally leverage physics-based simulations, machine learning surrogates, and experimental synthesis and characterization, within a feedback-driven closed-loop sequential learning framework. We discuss the importance of incorporating domain knowledge into the representation of materials, the construction and curation of datasets, the development of predictive property models, and the design and execution of experiments. We illustrate the application of this approach by successfully designing and validating Na- and Nd-containing phosphate-based ceramic waste forms. Finally, we discuss open challenges in such informatics-driven workflows and present an outlook for their widespread application for the cleanup of nuclear wastes.</p>","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":" 8","pages":" 1450-1466"},"PeriodicalIF":6.2000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/dd/d4dd00096j?page=search","citationCount":"0","resultStr":"{\"title\":\"Towards informatics-driven design of nuclear waste forms\",\"authors\":\"Vinay I. Hegde, Miroslava Peterson, Sarah I. Allec, Xiaonan Lu, Thiruvillamalai Mahadevan, Thanh Nguyen, Jayani Kalahe, Jared Oshiro, Robert J. Seffens, Ethan K. Nickerson, Jincheng Du, Brian J. Riley, John D. Vienna and James E. Saal\",\"doi\":\"10.1039/D4DD00096J\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Informatics-driven approaches, such as machine learning and sequential experimental design, have shown the potential to drastically impact next-generation materials discovery and design. In this perspective, we present a few guiding principles for applying informatics-based methods towards the design of novel nuclear waste forms. We advocate for adopting a system design approach, and describe the effective usage of data-driven methods in every stage of such a design process. We demonstrate how this approach can optimally leverage physics-based simulations, machine learning surrogates, and experimental synthesis and characterization, within a feedback-driven closed-loop sequential learning framework. We discuss the importance of incorporating domain knowledge into the representation of materials, the construction and curation of datasets, the development of predictive property models, and the design and execution of experiments. We illustrate the application of this approach by successfully designing and validating Na- and Nd-containing phosphate-based ceramic waste forms. Finally, we discuss open challenges in such informatics-driven workflows and present an outlook for their widespread application for the cleanup of nuclear wastes.</p>\",\"PeriodicalId\":72816,\"journal\":{\"name\":\"Digital discovery\",\"volume\":\" 8\",\"pages\":\" 1450-1466\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/dd/d4dd00096j?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital discovery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/dd/d4dd00096j\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital discovery","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/dd/d4dd00096j","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

信息学驱动的方法,如机器学习和顺序实验设计,已显示出对下一代材料的发现和设计产生巨大影响的潜力。在这一视角中,我们提出了一些将基于信息学的方法应用于新型核废料设计的指导原则。我们主张采用系统设计方法,并介绍了在设计过程的每个阶段有效使用数据驱动方法的情况。我们展示了这种方法如何在一个反馈驱动的闭环顺序学习框架内优化利用基于物理的模拟、机器学习代理以及实验综合和表征。我们讨论了将领域知识纳入材料表征、数据集构建和管理、预测性属性模型开发以及实验设计和执行的重要性。我们通过成功设计和验证含Na和Nd的磷酸盐基陶瓷废物形式来说明这种方法的应用。最后,我们讨论了这种信息学驱动的工作流程所面临的挑战,并对其在核废料清理领域的广泛应用进行了展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Towards informatics-driven design of nuclear waste forms

Towards informatics-driven design of nuclear waste forms

Informatics-driven approaches, such as machine learning and sequential experimental design, have shown the potential to drastically impact next-generation materials discovery and design. In this perspective, we present a few guiding principles for applying informatics-based methods towards the design of novel nuclear waste forms. We advocate for adopting a system design approach, and describe the effective usage of data-driven methods in every stage of such a design process. We demonstrate how this approach can optimally leverage physics-based simulations, machine learning surrogates, and experimental synthesis and characterization, within a feedback-driven closed-loop sequential learning framework. We discuss the importance of incorporating domain knowledge into the representation of materials, the construction and curation of datasets, the development of predictive property models, and the design and execution of experiments. We illustrate the application of this approach by successfully designing and validating Na- and Nd-containing phosphate-based ceramic waste forms. Finally, we discuss open challenges in such informatics-driven workflows and present an outlook for their widespread application for the cleanup of nuclear wastes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信