本质归一的截断托普利兹算子

IF 0.8 3区 数学 Q2 MATHEMATICS
Xi Zhao, Tao Yu
{"title":"本质归一的截断托普利兹算子","authors":"Xi Zhao,&nbsp;Tao Yu","doi":"10.1007/s10114-024-2696-y","DOIUrl":null,"url":null,"abstract":"<div><p>A model space is a subspace of the Hardy space which is invariant under the backward shift, and a truncated Toeplitz operator is the compression of a Toeplitz operator on some model space. In this paper we prove a necessary and sufficient condition for the commutator of two truncated Toeplitz operators on a model space to be compact.</p></div>","PeriodicalId":50893,"journal":{"name":"Acta Mathematica Sinica-English Series","volume":"40 10","pages":"2453 - 2480"},"PeriodicalIF":0.8000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Essentially Commuting Truncated Toeplitz Operators\",\"authors\":\"Xi Zhao,&nbsp;Tao Yu\",\"doi\":\"10.1007/s10114-024-2696-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A model space is a subspace of the Hardy space which is invariant under the backward shift, and a truncated Toeplitz operator is the compression of a Toeplitz operator on some model space. In this paper we prove a necessary and sufficient condition for the commutator of two truncated Toeplitz operators on a model space to be compact.</p></div>\",\"PeriodicalId\":50893,\"journal\":{\"name\":\"Acta Mathematica Sinica-English Series\",\"volume\":\"40 10\",\"pages\":\"2453 - 2480\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Sinica-English Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10114-024-2696-y\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Sinica-English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10114-024-2696-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

模型空间是哈代空间的一个子空间,它在后移下不变,而截断托普利兹算子是某个模型空间上托普利兹算子的压缩。在本文中,我们证明了模型空间上两个截断托普利兹算子的换元是紧凑的必要条件和充分条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Essentially Commuting Truncated Toeplitz Operators

A model space is a subspace of the Hardy space which is invariant under the backward shift, and a truncated Toeplitz operator is the compression of a Toeplitz operator on some model space. In this paper we prove a necessary and sufficient condition for the commutator of two truncated Toeplitz operators on a model space to be compact.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
138
审稿时长
14.5 months
期刊介绍: Acta Mathematica Sinica, established by the Chinese Mathematical Society in 1936, is the first and the best mathematical journal in China. In 1985, Acta Mathematica Sinica is divided into English Series and Chinese Series. The English Series is a monthly journal, publishing significant research papers from all branches of pure and applied mathematics. It provides authoritative reviews of current developments in mathematical research. Contributions are invited from researchers from all over the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信