关于海森堡群作用在环上的熵的说明

IF 0.8 3区 数学 Q2 MATHEMATICS
Yu Zhang, Yu Jun Zhu
{"title":"关于海森堡群作用在环上的熵的说明","authors":"Yu Zhang, Yu Jun Zhu","doi":"10.1007/s10114-024-3076-3","DOIUrl":null,"url":null,"abstract":"<p>In this paper, the entropy of discrete Heisenberg group actions is considered. Let <i>α</i> be a discrete Heisenberg group action on a compact metric space <i>X.</i> Two types of entropies, <span>\\(\\tilde{h}(\\alpha)\\)</span> and <i>h</i>(<i>α</i>) are introduced, in which <span>\\(\\tilde{h}(\\alpha)\\)</span> is defined in Ruelle’s way and <i>h</i>(<i>α</i>) is defined via the natural extension of <i>α</i>. It is shown that when <i>X</i> is the torus and <i>α</i> is induced by integer matrices then <span>\\(\\tilde{h}(\\alpha)\\)</span> is zero and <i>h</i>(<i>α)</i> can be expressed via the eigenvalues of the matrices.</p>","PeriodicalId":50893,"journal":{"name":"Acta Mathematica Sinica-English Series","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Note on the Entropy for Heisenberg Group Actions on the Torus\",\"authors\":\"Yu Zhang, Yu Jun Zhu\",\"doi\":\"10.1007/s10114-024-3076-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, the entropy of discrete Heisenberg group actions is considered. Let <i>α</i> be a discrete Heisenberg group action on a compact metric space <i>X.</i> Two types of entropies, <span>\\\\(\\\\tilde{h}(\\\\alpha)\\\\)</span> and <i>h</i>(<i>α</i>) are introduced, in which <span>\\\\(\\\\tilde{h}(\\\\alpha)\\\\)</span> is defined in Ruelle’s way and <i>h</i>(<i>α</i>) is defined via the natural extension of <i>α</i>. It is shown that when <i>X</i> is the torus and <i>α</i> is induced by integer matrices then <span>\\\\(\\\\tilde{h}(\\\\alpha)\\\\)</span> is zero and <i>h</i>(<i>α)</i> can be expressed via the eigenvalues of the matrices.</p>\",\"PeriodicalId\":50893,\"journal\":{\"name\":\"Acta Mathematica Sinica-English Series\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Sinica-English Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10114-024-3076-3\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Sinica-English Series","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10114-024-3076-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究离散海森堡群作用的熵。本文引入了两种熵:\(\tilde{h}(\alpha)\)和 h(α),其中\(\tilde{h}(\alpha)\)是按照鲁埃尔的方法定义的,而 h(α)是通过α的自然扩展定义的。研究表明,当 X 是环且 α 由整数矩阵诱导时,\(\tilde{h}(\alpha)\) 为零,而 h(α) 可以通过矩阵的特征值来表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Note on the Entropy for Heisenberg Group Actions on the Torus

In this paper, the entropy of discrete Heisenberg group actions is considered. Let α be a discrete Heisenberg group action on a compact metric space X. Two types of entropies, \(\tilde{h}(\alpha)\) and h(α) are introduced, in which \(\tilde{h}(\alpha)\) is defined in Ruelle’s way and h(α) is defined via the natural extension of α. It is shown that when X is the torus and α is induced by integer matrices then \(\tilde{h}(\alpha)\) is zero and h(α) can be expressed via the eigenvalues of the matrices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
138
审稿时长
14.5 months
期刊介绍: Acta Mathematica Sinica, established by the Chinese Mathematical Society in 1936, is the first and the best mathematical journal in China. In 1985, Acta Mathematica Sinica is divided into English Series and Chinese Series. The English Series is a monthly journal, publishing significant research papers from all branches of pure and applied mathematics. It provides authoritative reviews of current developments in mathematical research. Contributions are invited from researchers from all over the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信