论费尔德曼-卡托克公设子集上公设平均维度的变分原理

IF 0.8 3区 数学 Q2 MATHEMATICS
Kun Mei Gao, Rui Feng Zhang
{"title":"论费尔德曼-卡托克公设子集上公设平均维度的变分原理","authors":"Kun Mei Gao,&nbsp;Rui Feng Zhang","doi":"10.1007/s10114-024-2517-3","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we studied the metric mean dimension in Feldman–Katok (FK for short) metric. We introduced the notions of FK-Bowen metric mean dimension and FK-Packing metric mean dimension on subsets. And we established two variational principles.</p></div>","PeriodicalId":50893,"journal":{"name":"Acta Mathematica Sinica-English Series","volume":"40 10","pages":"2519 - 2536"},"PeriodicalIF":0.8000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Variational Principles of Metric Mean Dimension on Subsets in Feldman–Katok Metric\",\"authors\":\"Kun Mei Gao,&nbsp;Rui Feng Zhang\",\"doi\":\"10.1007/s10114-024-2517-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we studied the metric mean dimension in Feldman–Katok (FK for short) metric. We introduced the notions of FK-Bowen metric mean dimension and FK-Packing metric mean dimension on subsets. And we established two variational principles.</p></div>\",\"PeriodicalId\":50893,\"journal\":{\"name\":\"Acta Mathematica Sinica-English Series\",\"volume\":\"40 10\",\"pages\":\"2519 - 2536\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Sinica-English Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10114-024-2517-3\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Sinica-English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10114-024-2517-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了 Feldman-Katok(简称 FK)度量中的度量平均维度。我们引入了子集上的 FK-Bowen 公制均值维度和 FK-Packing 公制均值维度的概念。并建立了两个变分原理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Variational Principles of Metric Mean Dimension on Subsets in Feldman–Katok Metric

In this paper, we studied the metric mean dimension in Feldman–Katok (FK for short) metric. We introduced the notions of FK-Bowen metric mean dimension and FK-Packing metric mean dimension on subsets. And we established two variational principles.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
138
审稿时长
14.5 months
期刊介绍: Acta Mathematica Sinica, established by the Chinese Mathematical Society in 1936, is the first and the best mathematical journal in China. In 1985, Acta Mathematica Sinica is divided into English Series and Chinese Series. The English Series is a monthly journal, publishing significant research papers from all branches of pure and applied mathematics. It provides authoritative reviews of current developments in mathematical research. Contributions are invited from researchers from all over the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信