具有高维弱刘维尔频率的三维斜对称系统的可还原性

IF 0.8 3区 数学 Q2 MATHEMATICS
Jie Liu, Yuan Shan, Jing Wang
{"title":"具有高维弱刘维尔频率的三维斜对称系统的可还原性","authors":"Jie Liu, Yuan Shan, Jing Wang","doi":"10.1007/s10114-024-2540-4","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we consider the reducibility of three-dimensional skew symmetric systems. We obtain a reducibility result if the base frequency is high-dimensional weak Liouvillean and the parameter is sufficiently small. The proof is based on a modified KAM theory for 3-dimensional skew symmetric systems.</p>","PeriodicalId":50893,"journal":{"name":"Acta Mathematica Sinica-English Series","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reducibility of Three Dimensional Skew Symmetric System with High Dimensional Weak Liouvillean Frequencies\",\"authors\":\"Jie Liu, Yuan Shan, Jing Wang\",\"doi\":\"10.1007/s10114-024-2540-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we consider the reducibility of three-dimensional skew symmetric systems. We obtain a reducibility result if the base frequency is high-dimensional weak Liouvillean and the parameter is sufficiently small. The proof is based on a modified KAM theory for 3-dimensional skew symmetric systems.</p>\",\"PeriodicalId\":50893,\"journal\":{\"name\":\"Acta Mathematica Sinica-English Series\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Sinica-English Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10114-024-2540-4\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Sinica-English Series","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10114-024-2540-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们考虑了三维倾斜对称系统的还原性。如果基频是高维弱Liouvillean且参数足够小,我们就能得到还原性结果。证明基于三维偏斜对称系统的修正 KAM 理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reducibility of Three Dimensional Skew Symmetric System with High Dimensional Weak Liouvillean Frequencies

In this paper, we consider the reducibility of three-dimensional skew symmetric systems. We obtain a reducibility result if the base frequency is high-dimensional weak Liouvillean and the parameter is sufficiently small. The proof is based on a modified KAM theory for 3-dimensional skew symmetric systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
138
审稿时长
14.5 months
期刊介绍: Acta Mathematica Sinica, established by the Chinese Mathematical Society in 1936, is the first and the best mathematical journal in China. In 1985, Acta Mathematica Sinica is divided into English Series and Chinese Series. The English Series is a monthly journal, publishing significant research papers from all branches of pure and applied mathematics. It provides authoritative reviews of current developments in mathematical research. Contributions are invited from researchers from all over the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信