尖锐低正则空间中阻尼 BBM 方程的全局吸引子

Ming Wang
{"title":"尖锐低正则空间中阻尼 BBM 方程的全局吸引子","authors":"Ming Wang","doi":"10.1007/s00033-024-02288-7","DOIUrl":null,"url":null,"abstract":"<p>The long-term behavior of low regularity solutions to the damped BBM equation with a distribution force on the torus is studied. Since the energy equation fails to hold for the low regularity solutions, the existence of a bounded absorbing set is not a trivial. This difficulty is overcome by splitting the solution into five parts, where some parts decay exponentially in gradually higher regularity spaces, the final remainder belongs the energy space and thus enjoys the dissipative effect. In this way, the existence of a global attractor is proved in the sharp low regularity space. Moreover, the attractor is shown to have a finite fractal dimension based on the quasi-stable estimate method.</p>","PeriodicalId":501481,"journal":{"name":"Zeitschrift für angewandte Mathematik und Physik","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global attractor for the damped BBM equation in the sharp low regularity space\",\"authors\":\"Ming Wang\",\"doi\":\"10.1007/s00033-024-02288-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The long-term behavior of low regularity solutions to the damped BBM equation with a distribution force on the torus is studied. Since the energy equation fails to hold for the low regularity solutions, the existence of a bounded absorbing set is not a trivial. This difficulty is overcome by splitting the solution into five parts, where some parts decay exponentially in gradually higher regularity spaces, the final remainder belongs the energy space and thus enjoys the dissipative effect. In this way, the existence of a global attractor is proved in the sharp low regularity space. Moreover, the attractor is shown to have a finite fractal dimension based on the quasi-stable estimate method.</p>\",\"PeriodicalId\":501481,\"journal\":{\"name\":\"Zeitschrift für angewandte Mathematik und Physik\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zeitschrift für angewandte Mathematik und Physik\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00033-024-02288-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift für angewandte Mathematik und Physik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00033-024-02288-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了具有环上分布力的阻尼 BBM 方程的低正则解的长期行为。由于能量方程在低正则解中不成立,因此有界吸收集的存在并非易事。克服这一困难的方法是将解分成五个部分,其中一些部分在逐渐升高的正则性空间中以指数方式衰减,最后的剩余部分属于能量空间,因此享有耗散效应。通过这种方法,证明了在尖锐的低正则空间中存在全局吸引子。此外,基于准稳定估计方法,还证明了吸引子具有有限的分形维度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global attractor for the damped BBM equation in the sharp low regularity space

The long-term behavior of low regularity solutions to the damped BBM equation with a distribution force on the torus is studied. Since the energy equation fails to hold for the low regularity solutions, the existence of a bounded absorbing set is not a trivial. This difficulty is overcome by splitting the solution into five parts, where some parts decay exponentially in gradually higher regularity spaces, the final remainder belongs the energy space and thus enjoys the dissipative effect. In this way, the existence of a global attractor is proved in the sharp low regularity space. Moreover, the attractor is shown to have a finite fractal dimension based on the quasi-stable estimate method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信