AgriLLM:利用变压器进行农民查询

Krish Didwania, Pratinav Seth, Aditya Kasliwal, Amit Agarwal
{"title":"AgriLLM:利用变压器进行农民查询","authors":"Krish Didwania, Pratinav Seth, Aditya Kasliwal, Amit Agarwal","doi":"arxiv-2407.04721","DOIUrl":null,"url":null,"abstract":"Agriculture, vital for global sustenance, necessitates innovative solutions\ndue to a lack of organized domain experts, particularly in developing countries\nwhere many farmers are impoverished and cannot afford expert consulting.\nInitiatives like Farmers Helpline play a crucial role in such countries, yet\nchallenges such as high operational costs persist. Automating query resolution\ncan alleviate the burden on traditional call centers, providing farmers with\nimmediate and contextually relevant information. The integration of Agriculture\nand Artificial Intelligence (AI) offers a transformative opportunity to empower\nfarmers and bridge information gaps. Language models like transformers, the\nrising stars of AI, possess remarkable language understanding capabilities,\nmaking them ideal for addressing information gaps in agriculture. This work\nexplores and demonstrates the transformative potential of Large Language Models\n(LLMs) in automating query resolution for agricultural farmers, leveraging\ntheir expertise in deciphering natural language and understanding context.\nUsing a subset of a vast dataset of real-world farmer queries collected in\nIndia, our study focuses on approximately 4 million queries from the state of\nTamil Nadu, spanning various sectors, seasonal crops, and query types.","PeriodicalId":501168,"journal":{"name":"arXiv - CS - Emerging Technologies","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AgriLLM: Harnessing Transformers for Farmer Queries\",\"authors\":\"Krish Didwania, Pratinav Seth, Aditya Kasliwal, Amit Agarwal\",\"doi\":\"arxiv-2407.04721\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Agriculture, vital for global sustenance, necessitates innovative solutions\\ndue to a lack of organized domain experts, particularly in developing countries\\nwhere many farmers are impoverished and cannot afford expert consulting.\\nInitiatives like Farmers Helpline play a crucial role in such countries, yet\\nchallenges such as high operational costs persist. Automating query resolution\\ncan alleviate the burden on traditional call centers, providing farmers with\\nimmediate and contextually relevant information. The integration of Agriculture\\nand Artificial Intelligence (AI) offers a transformative opportunity to empower\\nfarmers and bridge information gaps. Language models like transformers, the\\nrising stars of AI, possess remarkable language understanding capabilities,\\nmaking them ideal for addressing information gaps in agriculture. This work\\nexplores and demonstrates the transformative potential of Large Language Models\\n(LLMs) in automating query resolution for agricultural farmers, leveraging\\ntheir expertise in deciphering natural language and understanding context.\\nUsing a subset of a vast dataset of real-world farmer queries collected in\\nIndia, our study focuses on approximately 4 million queries from the state of\\nTamil Nadu, spanning various sectors, seasonal crops, and query types.\",\"PeriodicalId\":501168,\"journal\":{\"name\":\"arXiv - CS - Emerging Technologies\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Emerging Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.04721\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Emerging Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.04721","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

农业对全球的生计至关重要,但由于缺乏有组织的领域专家,因此需要创新的解决方案,特别是在发展中国家,那里的许多农民都很贫困,负担不起专家咨询费用。自动解决查询问题可以减轻传统呼叫中心的负担,为农民提供即时的、与具体情况相关的信息。农业与人工智能(AI)的融合为农民赋权和弥合信息鸿沟提供了一个变革性机会。像变压器这样的语言模型是人工智能的新星,它们具有卓越的语言理解能力,是解决农业信息差距的理想选择。这项工作利用大型语言模型在解读自然语言和理解上下文方面的专长,探索并展示了大型语言模型在自动解决农业农民查询方面的变革潜力。我们的研究使用了在印度收集的大量真实世界农民查询数据集中的一个子集,重点研究了来自泰米尔纳德邦的约 400 万次查询,涵盖了各个部门、季节性作物和查询类型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AgriLLM: Harnessing Transformers for Farmer Queries
Agriculture, vital for global sustenance, necessitates innovative solutions due to a lack of organized domain experts, particularly in developing countries where many farmers are impoverished and cannot afford expert consulting. Initiatives like Farmers Helpline play a crucial role in such countries, yet challenges such as high operational costs persist. Automating query resolution can alleviate the burden on traditional call centers, providing farmers with immediate and contextually relevant information. The integration of Agriculture and Artificial Intelligence (AI) offers a transformative opportunity to empower farmers and bridge information gaps. Language models like transformers, the rising stars of AI, possess remarkable language understanding capabilities, making them ideal for addressing information gaps in agriculture. This work explores and demonstrates the transformative potential of Large Language Models (LLMs) in automating query resolution for agricultural farmers, leveraging their expertise in deciphering natural language and understanding context. Using a subset of a vast dataset of real-world farmer queries collected in India, our study focuses on approximately 4 million queries from the state of Tamil Nadu, spanning various sectors, seasonal crops, and query types.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信