基于区块链的垂直联合学习差异化私有方法

Linh Tran, Sanjay Chari, Md. Saikat Islam Khan, Aaron Zachariah, Stacy Patterson, Oshani Seneviratne
{"title":"基于区块链的垂直联合学习差异化私有方法","authors":"Linh Tran, Sanjay Chari, Md. Saikat Islam Khan, Aaron Zachariah, Stacy Patterson, Oshani Seneviratne","doi":"arxiv-2407.07054","DOIUrl":null,"url":null,"abstract":"We present the Differentially Private Blockchain-Based Vertical Federal\nLearning (DP-BBVFL) algorithm that provides verifiability and privacy\nguarantees for decentralized applications. DP-BBVFL uses a smart contract to\naggregate the feature representations, i.e., the embeddings, from clients\ntransparently. We apply local differential privacy to provide privacy for\nembeddings stored on a blockchain, hence protecting the original data. We\nprovide the first prototype application of differential privacy with blockchain\nfor vertical federated learning. Our experiments with medical data show that\nDP-BBVFL achieves high accuracy with a tradeoff in training time due to\non-chain aggregation. This innovative fusion of differential privacy and\nblockchain technology in DP-BBVFL could herald a new era of collaborative and\ntrustworthy machine learning applications across several decentralized\napplication domains.","PeriodicalId":501168,"journal":{"name":"arXiv - CS - Emerging Technologies","volume":"47 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Differentially Private Blockchain-Based Approach for Vertical Federated Learning\",\"authors\":\"Linh Tran, Sanjay Chari, Md. Saikat Islam Khan, Aaron Zachariah, Stacy Patterson, Oshani Seneviratne\",\"doi\":\"arxiv-2407.07054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present the Differentially Private Blockchain-Based Vertical Federal\\nLearning (DP-BBVFL) algorithm that provides verifiability and privacy\\nguarantees for decentralized applications. DP-BBVFL uses a smart contract to\\naggregate the feature representations, i.e., the embeddings, from clients\\ntransparently. We apply local differential privacy to provide privacy for\\nembeddings stored on a blockchain, hence protecting the original data. We\\nprovide the first prototype application of differential privacy with blockchain\\nfor vertical federated learning. Our experiments with medical data show that\\nDP-BBVFL achieves high accuracy with a tradeoff in training time due to\\non-chain aggregation. This innovative fusion of differential privacy and\\nblockchain technology in DP-BBVFL could herald a new era of collaborative and\\ntrustworthy machine learning applications across several decentralized\\napplication domains.\",\"PeriodicalId\":501168,\"journal\":{\"name\":\"arXiv - CS - Emerging Technologies\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Emerging Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.07054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Emerging Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.07054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了基于区块链的差异化私有垂直联邦学习(DP-BBVFL)算法,它为去中心化应用提供了可验证性和隐私保证。DP-BBVFL 使用智能合约从客户端透明地汇集特征表示,即嵌入。我们应用本地差分隐私技术为存储在区块链上的嵌入提供隐私保护,从而保护原始数据。我们为垂直联合学习提供了区块链差分隐私的第一个原型应用。我们用医疗数据进行的实验表明,DP-BBVFL 在实现高准确度的同时,还由于链上聚合而在训练时间上做出了折衷。DP-BBVFL 将差分隐私和区块链技术创新性地融合在一起,预示着多个去中心化应用领域的协作和可信机器学习应用将进入一个新时代。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Differentially Private Blockchain-Based Approach for Vertical Federated Learning
We present the Differentially Private Blockchain-Based Vertical Federal Learning (DP-BBVFL) algorithm that provides verifiability and privacy guarantees for decentralized applications. DP-BBVFL uses a smart contract to aggregate the feature representations, i.e., the embeddings, from clients transparently. We apply local differential privacy to provide privacy for embeddings stored on a blockchain, hence protecting the original data. We provide the first prototype application of differential privacy with blockchain for vertical federated learning. Our experiments with medical data show that DP-BBVFL achieves high accuracy with a tradeoff in training time due to on-chain aggregation. This innovative fusion of differential privacy and blockchain technology in DP-BBVFL could herald a new era of collaborative and trustworthy machine learning applications across several decentralized application domains.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信